파웅

MODULAR ELECTRONIC DEVICES

e

re니

technical catalogue

ELKO EP

We are traditional, innovative and purely Czech development manufacturer of electronic devices and we have been your partner in the field of electroinstallations for 26 years.

ELKO EP employs about 330 people, exports its products to more than seventy countries, and has representatives in thirteen foreign branches. Company of the Year of the Zlín Region, Visionary of the Year, Global Exporter of the Year, Participation in the Czech TOP 100, these are just some of the awards received. Still, we are not finnished We are constantly striving to move forward in the field of innovation and development. That's our primary concern.

Millions of relays, thousands of satisfied customers, hundreds of our own employees, twenty six years of research development and production, thirteen foreign branches, one company. ELKO EP, innovative- a purely Czech company based in Holešov, where development, production, logistics, service and support go hand in hand. We primarily focus on developing and manufacturing systems for building automation in the residential, commercial and industrial sector, a wide range of Smart city facilities and the so-called Internet of Things (IOT)

Facts and stats

Product Lines ELKO EP

 well as to industrial process control: time relays, instalation contactors, staircase
thermostats, power supplies units, control and signalling devices, GSM gates, etc.

Protection relays for industry
Every househola, every object and every machine ne
phase failure, asymmetry, frequency, or power factor
iNELS Air - lot devices communication on the Sigfox, LoRa and NB-of protocol. exclusive design of wireless wall switch buttons and other components.
of functions for both automation and comfort.

Energy management
pption in the home or in larger areas is an inc
different technologies - using a BUS or wireless system and thanks also with the loT.

Wireless Retrofit Hotel (HRESK)

Hospitality Hotel (GRMS) Suest soom Nanagement Seception and restaurant.

Building management system

Lighting control

 Everything can be controlled with a connection to iNELS wired or wireless technology.Multimedia Here you can findextensions for our iNELS system a Communication Servers and 3rd party applications

Switches and sockets
www.elkoep.com/relay-modular-electronic-devices Timers/Relays
A wide range of electronic modular devices, which bring new possibilities to home and office control, monitoring and security, as A wide range of electronic modular devices, which bring new possibilities to home and ofife control, monitions anc securty, as
well as to industrial process control: time ereays, installation contactors, staircase automatic switches, time switches clocks, dimmers,
www.elkoep.com/protection-monitor-relay
everal reasons why, overvoltage, under voltage,
www.elkoep.com/iot-products
ms. These networks enable devices
The new iNLLS Air product line responds to the dynamically developing network lot (Internet of Things). These networks enable devices
to communicate safely, over long distances and are optimized to minimize power consumption. The product group includes sensors for to communicate safely, over long distances and are optimized to minimize power consumption. The product group includes sensors for
communication on the Siffox, LoRa and NB-IOT protocol.

Wireless electroinstallation (RF)
A unique wireless control system providing you perfect control over your homel The RF Control system enables you to control functions A unique wireless control system providing you perfect control over your homel The RF Control system enables you to control functions
such ha heating, lighting, electrical appliances and window shutters, all with a single touch. No wall cutting, fast and easy installation,

Wired electroinstallation (BUS) Www.elkoep.com/inels-bus-system
The BUS system offers a unique solution for new installations (refurbishment) in family houses, hotels and villas. It offers a wide range
www.elkoep.com/energy-management
roducts provide measurement with three

Hotel Room Energy Saving Kit- Solutions for hotel rooms based on wireless technology is designed to function in existing hotels. It is possible to simply elevate the existing electrical installation to a higher level without long-lasting construction modifications.
www.elkoep.com/inels-hospitality www.elkoep.com/bms
Building Management System is a comprehensive solution for monitoring, and controlling even the most complex of building systems. You can monitor everything on your computer monitor or tablet in the comfort of reception or office.
www.elkoep.com/lighting-control
A sector that offers complete control over all lighting devices. From switching, dimming to cont
www.elkoep.com/lighting-control
olling your favourite DALL l uminaires. www.elkoep.com/av-multimedia
nd Door Communicators, Application
www.elkoep.com/logus90-products We offer you exclusive switches, sockets and accessories in a standard plastic or metallic design. However,

CRM-100

 (1) (9)
 (1) 3

SHT-7

Near Field Communication is the way of wireless
communication of two devices within a short distance of a few centimeters. A typical example of NFC is credit card payment. but now our ability to control your timing clock is also an but now our ability to control your timing clock is also an
option. You can also conveniently set it up using a smartphone option. You can also conveniently set it up using a smartphone
and transfer these set modes to other devices, clone them or back them up.

The brand new CRM-100 digital multi-function time relay is used, for example, to control lighting in your home, but it can also be used to control motors or pumps. Thanks to the digital setting and display time, the need for mechanical adjustment of the devices is avoided, resulting used functions for each in sersatle power ray it your fingertips, it will replace many other types which you needn't look for or buy.

NFC

Protection relays for industry

New types feature the ability to measure with accuracy of approximately 2%, which distinguishes them from cheap competitors and increases reliability. The relay boasts a lower power output of only 2.5 watts and the ability to monitor both alternating voltage and nonsinusoidal waveforms. They are suitable for 50 Hz and 60 Hz , which is especially appreciated by customers, whose products travels overseas. Thanks to the AT Mega 48P processor we can customize the parameters of the product. Inside the product there are no plug shocks as well.
Time relays
CRM-81J, CRM-83J | Single-function time relay10
CRM-82TO | Delay OFF without supply voltage 11
SJR-2 | Doublestage delay unit
CRM-2T | Delay ON star/delta 13
CRM-2H | Asymmetric cycler

\qquad 14
CRM-61 | Multifunction time relays 15
CRM-91H, CRM-93H, CRM-9S | Multifunction time relays16
CRM-100 | Digital multifunction time relay - NEW18
20
CRM-91 HE, CRM-2HE |Time relay with external potentiometer 20
21
PDR-2/A, PDR-2/B | Programmable digital relay21
22
PDR-2/A, $\mathrm{PDR}-2 / \mathrm{B} \mid$ Programmable digital relay
PDR-2/A, $\mathrm{PDR}-2 / \mathrm{B} \mid$ Programmable digital relay 24
SHT-4 | Digital time switch with an astronomical program 25
SHT-6 | Time switch with DCF control 26

DCFR-1 | Receiver DCF 77| $\quad 26$ |
| :--- |
| .$\quad 27$ |
| .$\quad 28$ |

SHT-7 | Switch timer clock with NFC programming capability - NEW
SMR-K, SMR-T, SMR-H, SMR-B | Super-multifunction relay
30
30
CRM-42, CRM-42F | Programmable staircase switch with signalling before switch off 32
34
CRM-4 | Staircase switch 34
Auxiliary and Power relays36
$750 \mathrm{~L}, 782 \mathrm{~L}$ | Power relays plug-in V308U, VS316/24,VS316/230 | Power relays 38
Dimmers
42
42
DIM-2 | Staircase switch with dimming
DIM-2 | Staircase switch with dimming 42
43
DIM-6 | Controlled dimmer 44
DIM6-3M-P | Expanding power module 45
DIM-15 SMP Expanding power mo
DIM-15 SMP Expanding power mo 46
48
DIM-14 | Controlled dimmer $\begin{array}{r}.48 \\ . . \\ \hline\end{array}$
SMR-S, SMR-U | Controlled dimmer
50
50
LIC-1 | Lighting intensity controlle
LIC-2 | Lighting intensity controlle 51
Power supplie
PSB-10-12, PSB-10-24, PS-10-12, PS-10-24, PS-30-12, PS-30-24, PS-30-R, PS-100-12, PS-100-24 Power supplies
PSB-10-12, PSB-10-24, PS-10-12, PS-10-24, PS-30-12, PS-30-24, PS-30-R, PS-100-12, PS-100-24 Power supplies 54 54
 56
ZSR-30, ZNP-10 | Power supply 57
ZTR-8-8, ZTR-8-12, ZTR-15-12 | Bell transformers 58
SOU-1 | Twilight swi
$\times \quad 61$
$\times .62$ 62
SOU-2 | Twilight switch with digital time switch clock
SOU-2 | Twilight switch with digital time switch clock
SOU-3|Twilight light switch 63
Memory relay
Memory relay
MR-41, MR-42 | Memory \& latching relay64
Control and signalling devices
65
USS | Controlling and signalling modules
Monitoring relays
HRN-33, HRN-63 HRN-34, HRN-64, HRN-35, HRN-37, HRN-67 | Monitoring voltage relay 70
72
HRN-41, HRN-42 |Monitoring voltage relay 72
HRN-43, HRN-43N | Relay for complete monitoring 3-phase mains.. 74
76
HRN-55, HRN-55N | Relay for monitoring phase sequence and failure 77
HRN-56| Relay for monitoring phase sequence and failure 78
HRN-57, HRN-57N | Relay for monitoring over/under voltage in 3-phase mains 79 79
80
MPS-1 | Optical signaling of three-phase main
MPS-1 | Optical signaling of three-phase main
HRF-10 | Frequency monitoring relay
HRF-10 | Frequency monitoring relay81
82
PRI-32 | Current monitoring relay 84
PRI-51 | Current monitoring relay 85
PRI-41, PRI-42 | Current monitoring
PRI-52 | Current monitoring relay 88
PRI-53 |Three-phase current monitoring relay 89
HRH-5 | Level switch
91
91
HRH-4| Level set 92
HRH-7 | Level switch 94
HRH-8 | Level switch - InNOVATION 96
98
HRH-x | Level sets.. 98
Level switches accessories 100
Cables, wires 101
Thermostats and hygrostats
TER-3A, TER-3B TER-3C TER-3D, TER-3G, TER-3H | Thermostats 104
TER-3E, TER-3F / Thermostat 105
TER-4 | 2-stage thermostat
106
106
TER-9 | Multifunction digital thermostat
108
108
TER-7|Thermostat for monitoring temperature of motor winding 110

ATR, ATF, ATC | Analog room and floor thermostat 112| . .112 |
| :--- |
| . |

ATV-1 | Energy-saving digital thermo-valve
ATV-1 | Energy-saving digital thermo-valve

TEV-1 |Thermostat | |
| :--- |
| .. |
| .114 |

TEV-2, TEV-3 |Therm $\begin{array}{r}. .115 \\ . . \\ \hline 16\end{array}$
TEV-4
RHT-1
Hy116
..
.117
RHV-1 | Hygrostat 118
Accessories to Thermostats
119
TC, TZ, Pt100 | Temperature sensors 120
Protection relays for industry - NEW
VROU1-28 Under and over voltage monitoring relays 125
VRU1-28, VRO1-28 | Voltage monitoring relays 126
VRSC1-28 | Synchro-check monitoring relays 128
VROU3-28 | Under and over monitoring relays 129
130
VRU3-28 | Under voltage monitoring relays 131
VRO3-28 | Over voltage monitoring relays. $\begin{array}{r}.132 \\ \\ \hline\end{array}$
VROU3N-28 | Under and over voltage monitoring relays $\begin{array}{r}. \\ \hline\end{array} 133$
VRU3N-28 | Under voltage monitoring relays $\begin{array}{r}134 \\ . . \\ \hline\end{array}$
VRSF3, VRSF3N | Failure and phase sequence monitoring relays 136
VRBU3, VRBU3N I Phase balance and undervoltage monitoring relays 138
CROU1-28 | Under and over AC current monitoring relays $\begin{array}{r}.140 \\ \ldots \\ \hline\end{array}$
CRGF1-18 | Ground fault monitoring relays 142 $\begin{array}{r}144 \\ . \\ \hline\end{array}$
CRMA1-28|DC low current monitoring relays
CRMA1-28|DC low current monitoring relays
CRRP1-28, CRRP3-28 | Reverse power monitoring relays 146
FRSS1-38 | Speed sensing/monitoring relay. 148
VS120, VS220, VS420, VS425, VS440, VS463 | Installation contactors 150
VSM220, VSM425 | Installation contactors with manual control $\begin{array}{r}.152 \\ . \\ \hline\end{array}$

Chart 1. Version
DIN rail mounting

Chart 1. Version DIN rail mounting															Chart 2. Version Mounting into an installation box			
Type															Type			
	1-MODULE	- -	- ••	- •••	- -	- ••	- -	- •	- -							a -delay off on		
	2-MODULE										\bullet					entering edge		
	3-MODULE									\bullet						b-delay off on		
	plug-in													- ••		downward edge		
	Under the switch	See chart 2 Version - n														c-delay off on		
$\begin{aligned} & \frac{0}{5} \\ & \frac{5}{\frac{5}{3}} \\ & \hline \end{aligned}$	Rotary switch	$\bullet \bullet \bullet$	- ••	- •••	- •	-••			- -					- ••		downward edge		
	Button									-	-		-			d - cycler - flasher		
	Sliding switch							-								by impuls		
	External potentiometer				- -											e- pulse shift		
	Delay OFF after switch off the Input supply			-												f-delay on		
	Delay ON	-	-	- -	\bullet	\bullet				\bullet				-•				-
	Delay OfF	\bullet	-		\bullet	\bullet			\bullet					$\bullet \cdot$		g -pulse relay		
	Symmetrical cycler starting					-												
	with delay															h-impulse relay		
	Delay OFF after impulse OFF			- -	\bullet	\bullet				-				- -		with delay		
	Symmetrical cycler															with gap		
	starting with impulse															j - delay on after		
	Staircase switch				-	-	\bullet	-						- -		switched off		
	Impulse shift			$\bullet \cdot$	\bullet	\bullet				\bullet				$\bullet \bullet$	$\stackrel{\text { E, }}{\underline{E}}$			
	Memory (impulse) relay				-	-								$\bullet \bullet$		0.1-15		
	Impulse generator			$\bullet \bullet$	-	\bullet				\bullet				$\bullet \bullet$				
	Delay ON at switch on controlling contact															1-10s		-
	Asymmetric cycler starting															$0.1-1$ min		
	with delay					-								\bullet				
	Asymmetric cycler starting					- -				-				-		$1-10 \mathrm{~min}$		
	Delay ON															$0.1-1 \mathrm{~h}$		-
	star / delta						-											
	Switching in real time										-					1-10 h		
	Impuls relay in delay ON								\bullet									
E	$0.1-1 \mathrm{~s}$	-	$\bullet \bullet \bullet$	\bullet	$\bullet \cdot$		\bullet		$\bullet \bullet$					-••		0.1 - 1 day		
	1-10s	\bullet	\bullet	-	\bullet	$\bullet \bullet$	\bullet		$\bullet \bullet$					$\bullet \bullet \bullet$		1-10 days		-
	$0.1-1$ min	\bullet	-	- -	\bullet	$\bullet \bullet$	\bullet		$\bullet \bullet$					$\bullet \bullet \bullet$				
	1-10 min	$\bullet \bullet$		-	-	-	-		\bullet					$\bullet \bullet \bullet$				
	0.1-1 1 hrs					-	-							$\bullet \bullet \bullet$		AC230 V		
	1-10 hrs						\bullet											
	1-10 days				-	$\bullet \cdot$	-		-					$\bullet \bullet \bullet$	-	Ixtriac		
	3-30 days					- \cdot								\bullet		$1 \times \mathrm{NO} \mathrm{AgSnO}_{2}$		-
	10-100 days					- •	-							\bullet				
	$30 \mathrm{~s}-10 \mathrm{~min}$							-										
	99 h 59 min 59 s									-								
	Day																	
	Week											-	\bullet	-				
	Month												\bullet	-				
	Year											-		-				
	230 VaC	$\bullet \bullet$	\cdots	- - -		$\bullet \bullet$	- -	-	\bullet	-		\bullet		-				
	12-240 AC/DC	$\bullet \bullet \bullet$	- -	- ••						-	-		-	- - -				
	12-240VaC					-												
를	1 x changeover / SPDT 8 A								-				\bullet	,				
	$1 \times$ changeover / SPDT 16A	- -			- -	-	-					-•	-	\bullet				
	2 x changeover / DPDT 8 A			-										- -				
	2 x changeover / DPDT 16A									-	-	-						
	3x changeover / SPDT 8 A		$\bullet \bullet$	- -														
	Static output (triac)																	
	$1 \times \mathrm{NO} 16 \mathrm{~A}$							\bullet										

Technical parameters	CRM-81J	CRM-83J
Functions:	ZR-delay ON / ZN - delay OFF / BL- cycler 1:1	
Supply terminals:	A1-A2	
Voltage range: $\overline{\text { a }}$	AC/DC 12-240V (AC 50-60 Hz)	
Burden (max): \quad S	AC 0.7-3 VA/DC $0.5-1.7 \mathrm{~W}$	
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	
Consumption (apparent/oss):	AC max. $12 \mathrm{VA} / 1.3 \mathrm{~W}$	AC max. $12 \mathrm{VA} / 1.9 \mathrm{~W}$
Max. dissipated power		
(Un+terminals:	4w	4.5 W
Supply voltage tolerance:	$-15 \% ;+10 \%$	
Supply indication:	green LED	
Time ranges:	$0.15-10 \mathrm{~h}$ (in 6 ranges)	
Time setting:	potentiometer	
Time deviation:	5%-mechanical setting	
Repeat accuracy:	0.2% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}, \mathrm{at}=68^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:		
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$	8A/AC1
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$	$2000 \mathrm{VA} / \mathrm{AC1}, 192 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<35$	$10 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$	
Output indication:	ED	
Mechanical life:	3×10^{7}	
Electrical life (AC1):	0.7×10^{5}	
Control		
Consumption of input:	AC $0.025-0.2 \mathrm{VA} / \mathrm{DC} 0.1-0.7 \mathrm{~W}$ (UN), AC 0.53 Va (AC 230V)	
Load between S-A2:	230 V - Yes / UNI - No	
Control terminals:	Al-S	
Glow tubes connetions:	230 V - Yes/UNI-No	
Max. amount of glow lamps	UNI - glow lamps cannot connected	
connected to controlling	230 V - max. 10 pcs	
input:	(measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{AC}$)	
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited	
Reset time:	max. 150 ms	
Other information		
Power of control input:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.1311^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$	
Electrical strength:	4 kV (supply-output)	
Operating position:	any	
Mounting:	din rail en 60715	
Protection degree:	IP40 from front panel//P20 terminals	
Overvoltage category:	III.	
Pollution degre:	2	
Max. cable size (mm):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$	
Weight:	$60 \mathrm{~g}(2.10 \mathrm{oz}$)	85 g (302.)
Standards:	EN 61812-1, EN 61010-1	

Single-function and single-time relay with fine time setting by potentiometer (within the frames of a particular time range).
Suitable for applications where function and time requirements are known.

- Time switch, possible to be used for pump delay after switching heating off, switching of fans.
- Choice of 3 function

1) ZR-Delay ON
2) ZN-Delay OFF
3) BL-Repeat Cycle
-Functions can be controlled by supply voltage or time scale contro input
-Choice of 6 time ranges: ($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 6 \mathrm{~s}-60 \mathrm{~s} / 1 \mathrm{~min}-10 \mathrm{~min}$ 6 min $-60 \mathrm{~min} / 1 \mathrm{~h}-10 \mathrm{hrs}$)
Universal voltage range AC/DC $12-240 \mathrm{~V}$ or AC 230 V
-Output contact: CRM-81: $1 \times$ changeover/ SPDT 16 A
CRM-83): 3x changeover/ 3PDT 8 A.

- Red LED output indicator.
- 1-MODULE, DIN rail mounting

Supply indication Supply terminals

Functions

ZR - Delay ON

Note: the function ZR and ZN is controlled by supply voltage and control input ie. Once phase failure is detected and supply voltage is re applied The relay automatically makes one cycle.

Connection

CRM-81J
\qquad

CRM-83J	

Symbol

Example of an order
CRM-81J/230, ZR10s: $1 \times$ changeover contact, voltage AC 230 V , function: delay ON, time 1-10 s
CRM-83J/UNI, BL1h: 3x changeover contact, voltage AC/DC $12-240 \mathrm{~V}$,

Technical parameters	CRM-82TO
Number of functions:	a - On Delay (Power On) / e- Off Delay (S Break)
Supply terminals:	A1 - A2
Voltage range:	AC/DC 12-240V (AC 50-60 Hz)
Burden (max):	AC 0.7-3 VA / DC $0.5-1.7 \mathrm{~W}$
Max. dissipated power	
(Un+terminals:	2.5 W
Supply voltage tolerance:	-15\%; 10%
Supply indication:	green LED
Time ranges:	0.15 - 10 min
Time setting:	potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2% - set value stability
Temperature coefficient:	$0.1 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.1 \% /{ }^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	$2 \times$ changeover/DPDT (AgNi/Silver Alloy)
Current rating:	8A/AC1
Breaking capacity:	$2000 \mathrm{VA} / \mathrm{AC1} 1,192 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$10 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Output indication:	red LED
Mechanical lif:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply-output)
Operating position:	any
Mounting:	din rail EN 60715
Protection degre:	IP40 from front panel//P10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size ($\mathrm{m} \mathrm{m}^{2}$):	solid wire max. 2×2.5 or 1×4, with sleeve max. 2×1.5 or 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\text {a }}\right.$)
Weight:	73 g (2.602.)
Standards:	EN 61812-1, EN 61010-1

- "True OFF" relay- relay timing without supply voltage,

Example of use: back-up source for Delay OFF in case of voltage failur .g. emergency lig ing, estar respirator, or protection of el. 2 time functions adjustable by rotary switch:
a - Delayed return after disconnecting of supply
e - Delayed
a - Delayed return
e - Delayed start.

- Time range (adjustable by rotary switch and fine setting by potenti ometer): $0.1 \mathrm{~s}-10 \mathrm{~min}$.
- Interruptions in the power supply must take time steps (tens to hundreds of milliseconds).
- Output contact: $2 x$ changeover / DPDT 8 A.
- Output status indicated by red LED (only in case of supply voltage
connection). connection).
- 1-MODULE, DIN rail mounting

Description

Function
a - Delay OFF (S break) the power e- Off Delay (S break) supply is switched off (min.

Connection

Symbol

- For gradual switching of high power (e.g. el.heating), prevents curren strokes in the main
Time sale O1s lay ON (2 time relays in one).
- Time scale $0.1 \mathrm{~s}-10$ days divided into 10 time ranges:
$0.15 \mathrm{~s} / \mathrm{Is} / 1 \mathrm{~s}-1 \mathrm{os} / 0 . \mathrm{min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{~h}-1 \mathrm{~h} / \mathrm{h}-10 \mathrm{hrs}$, day -1 day $/ 1$ day -10 days / ON / OFF
0.1
- Times $t 1$ and $t 2$ are independantly adjustable.
- t and t 2 are switched on after supply voltage connection.

Rough time setting via rotary switch.
Output contact: $2 \times$ changeover / DPDT 16 A
Output contact: $2 \times$ changeover / DPDT 16 A.
${ }^{1-M O D U L E}$.

Description

Function

Technical parameters	CRM-2T
Number of functions:	1
Supply terminals:	A1-A2
Voltage range: $\overline{\text { E }}$	AC/DC 12-240V/AC $50-60 \mathrm{~Hz}$
Burden (max):	AC 0.7-3 VA/DC $0.5-1.7 \mathrm{~W}$
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Burden:	AC max. $12 \mathrm{VA} / 1.9 \mathrm{~W}$
Max. dissipated power	
(Un+terminals):	4 w
Supply voltage tolerance:	-15%; 10%
Supply indication:	green LED
Time scale:	t1: $0.1 \mathrm{~s}-100$ days, tre:0.1 $\mathrm{s}-1 \mathrm{~s}$
Time setting:	potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	2x changeover/ DPDT (AgNi / Silver Alloy)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Output indication:	multifunction red LED
Mechanical life:	3×10^{7}
Electrical life (resistive):	0.7×10^{5}
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply-output)
Operating position:	any
Mounting:	din rail EN 60775
Protection degree:	IP40 from front panel//P20 terminals
Overvoltage category:	II.
Pollution degree:	2
Terminal wire capacity (mm):	$\max .1 \times 2.5,2 \times 1.5$, with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.55^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{5}\right)$
Weight:	UN1-84g (30z.),230-819 (2.9 oz.)
Standards:	EN 61812-1, EN 61010-1

- It serves for delay ON of motors star/delta.
- Time t1 (star)
time scale $0.1 \mathrm{~s}-100$ days devided into 10 time ranges.
met2 (de setting by rotary switch
time scale $0.1 \mathrm{~s}-1 \mathrm{~s}$
fine time setting by potentiometer
- Voltage range: AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 12-240 \mathrm{~V}$.
- Output contact: $2 x$ changeover / DPDT 16 A.
- Output indication: multifunction red LED.
- 1-MODULE, DIN rail mounting.

Description

Function
Delay ON star / delta

Connection
Start up of motor ($\lambda-\Delta$)

Symbol

[^0]

Technical parameters	CRM-2H
Number of functions:	2 (function is chosen by connecting S-A1)
Supply terminals:	A1-A2
Voltage range: $\overline{\text { e }}$	AC/DC 12-240V (AC $50-60 \mathrm{~Hz}$)
Burden (max): \quad S	AC0.7-3 VA/DC $0.5-1.7 \mathrm{~W}$
Voltage range: $\quad \stackrel{\circ}{\sim}$	$\mathrm{AC} 230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Power input (apparentloss input:	AC max. $12 \mathrm{VA} / 1.3 \mathrm{~W}$
Max. dissipated power	
(Un + terminals):	4 w
Supply voltage tolerance:	-15%; 10%
Supply indication:	green Led
Time scale:	0.15 - 100 day
Time setting:	rotary switch and potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2%-set value stability
Temperature coefficient:	$0.01 \% / /^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}, \mathrm{at}=68^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	1 x changeover/ SPDT (AgNi / Silver Alloy)
Current rating:	16A/AC1
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{ACl}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Output indication:	multifunction red LED
Mechanical life:	3×10^{7}
Electrical life (resistive):	0.7×10^{5}
Reset time:	max. 150 ms
Other information	
Operating temperatur:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply-output)
Operating position:	any
Mounting:	din rail en 60715
Protection degree:	IP40 from front panel//P20 terminals
Overvoltage category:	III.
Pollution degree:	2
Terminal wire capacity (mm^{2}):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight	UN1-63 g (2.20z), 230-61 g (2.2 oz.)
Standards:	EN 61812-1, EN 61010-1

- Cycler with independent adjustable switch ON/OFF
- Used for regular room ventilation, cyclic dehumidification, light con trol, circulating pumps, illuminated advertising, etc.
functions:

2) Cycler beginning with paus

- Function choice is done by an external jumper of terminals s-AI
- Time scale $0.1 \mathrm{~s}-100$ days devided into 10 time ranges:
$(0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{~h}$
$1 \mathrm{~h}-10 \mathrm{hrs} / 0.1$ day -1 day $/ 1$ day -10 days $/ 3$ days -30 days $/ 10$ day 100 days)
Rough time setting via rotary switch
- Voltage range: AC 230 V or AC/DC $12-240 \mathrm{~V}$
- Output contact: $1 \times$ changeover / SPDT 16 A
- Output indication: multifunction red LED
- 1-MODULE, DIN rail mounting

Description

Function
Cycler beginning with pulse

Connection
Cycler beginning with pulse Cycler beginning with pause

Symbol

Technical parameters	CRM-61
Number of functions:	6
Supply terminals:	A1-A2
Supply voltage:	AC 24-240V ($\mathrm{AC} 50-60 \mathrm{~Hz}$ and DC 24 V
Burden (max):	AC 0.7-3 VA / DC $0.5-1.7 \mathrm{~W}$
Max. dissipated power	
(Un+terminals:	3 W
Supply voltage tolerance:	15%; 10%
Supply indication:	green Led
Time ranges:	0.15 - 10 h
Time setting:	rotary switch and potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\circ} \mathrm{F}\right.$, at $\left.=68^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	$1 \times$ changeover/ SPDT (AgNi / Silver Alloy)
Currentrating:	$8 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	$2000 \mathrm{VA} / \mathrm{AC1}, 240 \mathrm{~W} / \mathrm{DC}$
Output indication:	multifunction red LED
Mechanical life:	1×10^{7}
Electrical life (AC1):	1×10^{5}
Controlling	
Control. voltage:	AC $24-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$ and DC 24 V
Control power input:	AC $0.025-0.2 \mathrm{VA} / \mathrm{DC} 0.1-0.7 \mathrm{~W}$
Load between S-A2:	Yes
Glow-tubes:	No
Control. terminals:	A $1-\mathrm{S}$
Max. capacity of cable control:	0.1 M F
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited
Reset time:	max. 120 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C} \mathrm{to}+55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}^{\circ}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply-output)
Operating position	any
Mounting:	din rail En 60715
Protection degree:	IP40 from front panel//P10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm$)^{2}$:	max. 2×2.5, max. 1×4 with sleeve max. $1 \times 2.5,2 \times 1.5 \mathrm{~mm}^{2}$ (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5\right)$
Weight:	$68 \mathrm{~g}(2.4 \mathrm{oz}$)
Standards:	EN 61812-1, EN 61010-1

Multifunction time relay (6 functions and 6 time ranges) economic version of CRM-91H

- To be used for electrical appliances, control of lights, heating, motors pumps, fans, etc.
.6 functions:
-3 time functions controlled by supply voltage
-3 time functions controlled by control input
- Easy to use function and time-range setting by rotary switches - Time scale $0.1 \mathrm{~s}-10$ hrs divided into 6 range:
s-1 s/1 s-10s/0.1 min-1 min/ $1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{~h} /$
Universal voltage range: AC 24-240 V, DC 24 V
- Output contact: 1x changeover 8 A / SPDT
- Multifunction red LED output indicator flashes or shines depending - Multifunction red LED out
- 1-MODULE, DIN rail mounting

Description

Function

Delay ON after energization
b

Delay OFF after energization
d $\stackrel{u}{\square}$

yycer beginning with impulse after
e ${ }^{\mathrm{s}}$

elay OFF after de-energization, instant
k $\stackrel{s}{\square}$

Impulse relay with delay, press its delay
\square Delay ON after make of the switch til

Connection
Symbol

CRM-91н
CRM-93H
CRM-9S
\prod_{5}^{6}

Function

Time ranges

0.1 -1s	1-10s	0.1-1 min	1-10 min	0.1-1 h	1-10 hrs	0.1-1 day	1-10 days	only ON	only OFF

1) Output contacts of CRM-93H do not allow switching of different phases or 3 -phase voltages (voltage $>250 \mathrm{~V}$).
2) When mounting into steal-plated switchboards, it is necessary to keep a safety distance of min. 3 mm from terminal's screws $35-36-38$ and $25-26-28$ towards the shutter of a switchboard.

Technical parameters	CRM-100
Number of functions:	17
Supply terminals:	A1-A2
Voltage range:	AC/DC $24-240 \mathrm{~V}(50-60 \mathrm{~Hz})$
Consumption (apparent/loss):	AC max. 1-4 VA / DC max. 1-3 W
Max. dissipated power	
(Un+terminals):	4 w
Supply voltage tolerance:	-15\%; 10%
Time ranges:	0.15 - 999 hrs .
Time setting:	Buttons SET/ADJ
Repeat accuracy:	$\pm 0.5 \%$ - of selected range
Variation in timing due to	
Variation in timing due to	
temperature change:	$\pm 5 \%$
Output	
Number of contacts:	1×C/0/ SPDT (AgNi)
Current rating:	8A/AC1
Breaking capacity:	2000 VA / AC1, 192 W/DC
Inrush current:	$10 \mathrm{~A} /<35$
Switching voltage:	$250 \mathrm{VAC} 1 / 24 \mathrm{VDC}$
Output indication:	multifunction red LED
Mechanical life:	2×10^{7}
Electrical life (AC1):	1×10^{5}
Controlling	
Control terminals:	A1-B1
Other information	
Operating temperatur:	14..131 ${ }^{\circ} \mathrm{F}\left(-10 . .+55^{\circ} \mathrm{C}\right)$
Storage temperature:	$-22.158^{\circ} \mathrm{F}\left(-30 . .+70^{\circ} \mathrm{C}\right)$
Isolation (Between Input and	
Output:	2.5 kV
Operating position:	any
Mounting:	DIN rail en 60715
Protection degree:	IP30 from front panel/IP20 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$85 \times 18.2 \times 76 \mathrm{~mm}\left(3.3^{\prime \prime} \times 0.7^{\prime \prime} \times 2.99^{\prime \prime}\right)$
Weight:	78 g (2.80z)

- Digital multifunction relay can be used for controlling lights, heating, motors, pumps, machines and appliances where you need set time functions.
- Thanks to digital display and settings you exact set reguired time (without any mechanical tolerance).
Time range 0.1 s - 999 hours
- Universal power supply $24-240 \mathrm{~V} \mathrm{AC/DC}$ brings you variability of powering.
- Visible tim

Visle time function for non-autoratized.

- 1-MODULE, DIN rail mounting.

Description

Description of displayed elements on the screen

Connection

Symbol

Supply

Voltage range: Burden (max).

Max. dissipated poone
(Un + terminals):
Supply voltage toler
Supply indication:
Time ranges.
Time setting:
Time deviation:
Repeat accuracy:
Tempera
Output
Current rating:
Breaking capacity:
Switching voltage
Switching voltage:
Mechanical life:
Mechanical life:
Control
Control. voltage:
Control power input:
Glow-tubes:
Control terminals:
Max. capacity of cable control
Impulse length:
Rese time:
Operating temperitur
Storating temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage category:
Dimensions:
Weight:
Standards:

Time ranges

Time ranges of PRM-91H, PRM-92H are identical with CRM-91H. See page 1 . Time ranges of PRM-2H are identical with CRM-2H. See page 14 .

- Multifunction time relays are equivalents by module types of relay designed to standardized plump 11 or 8 pin socket
- Pin type enables easy changing, replacement older type of relays (pin compatible) or easy changing auxiliary relay for time relays
- Multifunction time relay PRM-91H

 10 ranges
atput contact 1×16 A / 4000 VA, 250 V AC
- Multifunction time relay PRM-92H
-11 pin type
-10 time function
10 time functions, time scale from $0,1 \mathrm{~s}$ to 10 days is divided into 10 ranges
output conta
- 11 pin type

2 time functions, time scale from 0,1 s to 100 days is divided into 10 ranges
output cont

- output contact $2 \times 8 \mathrm{~A} / 2000 \mathrm{VA}, 250 \mathrm{~V} \mathrm{AC}$
- Output indication: multif red LED, flashing at certain states - PLUG-IN relays

Supply indication Supply indic			
Output indication	- 0	1 mo	Output indica
Rought time seting			Rought time
Fine time setting	${ }^{\circ} \mathrm{i}$		
Function setting			Setting IMPUUSe
			Seting P Puse
			Setting PAuse

Functions
PRM-91H, PRM-92H: Functions of PRM-91H, PRM-92H are identical with CRM-91H. See page 17.
PRM-2H: Choice Function in PRM-2H is done by connecting terminals 2 and 5.

Connection

Symbol

LEGEND TO DESCRIPTION

- Multifunction programmable digital relay with 4 digit red LED display Control and setting are done by 3 buttons, user-friendly menu, abso
lute accuracy in timer setting, time countdown on a display, galvani lute accuracy in timer setting, time countdown on a display, galvan-
cally separated START and STOP control inputs with UNI supply. Thanks to its complexity, it is possible to program also mor demanding time functions by using 2 independent times.
- 2 independent times, with combination of 2 inputs and 2 outputs. - PDR-2/A: 16 functions, choice of functions of the other relay, 30
memory places for most frequently used times. memory places for most frequently used times.
- PDR-2/B: 10 functions, 1 output of 10 functions can be assigned to - PDR-2/B: 10 functions, 1 output of 10 functic
each relay $=2$ relays in one device.
- 2 independent times in range: $0.01 \mathrm{~s}-100 \mathrm{hrs}$.
- Supply voltage AC/DC $12-240 \mathrm{~V}$ or AC 230 V .

3 -MODULE, DIN rail mounting.

Description

Symbol

Time range:
Time deviation:
Setting error:

$$
\begin{gathered}
0 \% \\
100 \%
\end{gathered}
$$

Digital places:

$$
\begin{gathered}
0.01 \mathrm{~s} \\
0.01 \% \text { of set value }
\end{gathered}
$$

lected via program

- This time switch clock SHT is used to control various appliances in rea
time: daily, weekly monthly and yearly mode time; daily, weekly, monthly and yearly mode.
tantly manually, manu
- "Holiday program" option to choose an interval when the device doesn't switch according to the standard program, but will be block
during that time during that time.
Automatic conversion summer / winter time.
- Sealable cover of front panel, easy controlling via 4 buttons.

100 memory places, clear LCD display, min. interval 1 s .
Voltage range: AC 230 V or AC/DC $12-240 \mathrm{~V}$.

- Cyclic output.
- Pulse output.
- SHT-1, SHT-3: one channel version, 2-MODULE, DIN rail mounting, clamp terminals.
SHT-1/2, SHT-3/2: two channel version, 2-MODULE, an individual pro gram can be run
on each channel.

Description

Description of displayed elements on the screen

Connection

Plug-in module

Type of backup battery: CR 2032 (3V)
used for controlling the lighting (billbords, advertisements shop wit dows, etc.) with no light sensor required.

- function:
by entering the geographic coordinates, the lighting can be switched
on/off by ssy on/off by sunrise and sunset
- the preset coordinates for
adiustment cord thates or European cities, with optional manu adjustment of the geographical coordinate
sunrise and sunset
- selection of ON/OFF functions at sunrise
astro-clock with adjustable interruption
astro-clock with adjustable interruption
operating hours counter for each channel
operating hours counter for each channel
timer - switching on the basis of real-time.
two-channel design, where each channel is programmable indepen dently of the other.
- automatic switching between winter and summer time
- sealable transparent cover on the front panel.
- data and time backup using the battery
battery life - up to 3 years
disasembing is re backup battery through the plug-in module, - supply voltage: AC 230 V .
- 2-MODULE, DIN rail mounting.

Description

Description of items displayed on the screen

Symbol

Universal DCF module, which is designed for controlling the SHT-6 devices.

- outdoor applications (IP65 protection).
-Two-wire connection - not polarity sensitive!
visual in connecting cable is up to 100 m (328)
visual indication of proper function module.

Technical parameters	DCFR-1
Connection:	2 conductors
Max. cross-connection conductors:	$2.5 \mathrm{~mm}^{2}$
Max voltage on the wires:	10 V
Indication Function:	red LED
Other information	
Storage temperature:	$-30 .+70^{\circ} \mathrm{C}\left(-22\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Protection:	1P65
Dimensions:	$98 \times 62 \times 34 \mathrm{~mm}\left(3.3 \times 2.4 \times 1.3^{\prime \prime}\right)$
Weight:	$110 \mathrm{~g}(3.88$ oz)
Operating position:	perpendicular to the direction of reception
The reception area:	about 1500 km from Frankfurt / Main

Description

Working position - options

Through simple steps in the application you can set the desired on and off settings based on real time. You can copy this setting to other days, and altogether you can store up to 100 programs. The entire setup project can be saved to your smartphone and transferred to the next timer switch. The smartphone application serves not only to upload settings but also to download. The main benefit is speed and simplicity.

Near Field Communication is the way of wireless communication of two devices within a short distance of a few centimeters. A typical example of
NFC is credit card payment, but now our ability to control your timing clock NFC is credit card payment, but now our ability to control your timing clock
is also an option. You can also conveniently set it up using a smartphone and is also an option. You can also conveniently set it up using a smartphone

Technical parameters SMR-K SMR-T SMR-H SMR-B Number of functions:

* for more information see page 41

Multifunction relay designed for installation into a wiring box or unde wall-switch in an existing electrical installation. for a switch controlled by time or for an impulse relay a button.
More information about type and size of load for these products can be found on page 161
SMR-K
-3 -wire connection, works without the connection of a neutral conductor power output: $10-160 \mathrm{VA}$
for flawless function of the product is necessary the presence of a load R, L or C between input S and neutral wire
SMR-T
-wre connection, works without the connection of a neutral conductor power output: 10-160 VA
between input S and neutral wire is possible connect any load R, L, o

- SMR-H
- 4 -wire connection
-power output: $0-200 \mathrm{VA}$
SMR-B
10 functions
output contact $1 \times 16 \mathrm{~A} / 4000 \mathrm{VA}, 250 \mathrm{~V} \mathrm{AC}$
enables switching of fluorescent lights and also energy saving lights
suitable for switching loads greater than SMR-K. SMR-T SMR-H fo suitable for switching loads greater than SMR-K, SMR-T, SMR-H, for
example pulse relay, stair automatic switch, switching of ladder radia tors in bathrooms
independent galvanically separated input AC/DC $5-250 \mathrm{~V}$, for exam - independent galvanically separated inp
ple for control from a security system

Function

Connection SMR-K, SMR-T, SMR-H, SMR-B

Typical wiring of SMR-K
timer for fan

Typical wiring of SMR-H
-time for or lamp

Note: SMR-K, SMR-T, SMR-H are not intended for switching capacity load (energy saving buibs and LED lights with capacity power etc.), these products are only intended for switching resistive and inductive loads (incandescent bulbs, fans, etc.). SMR-B with relay output is intended to other types of load. Using this output it is possible to switch the load of R, L or C-values listed in the load table. Between inputs S and neutral wire is possible to connect any load of R, L or C, however this is not (unlike the SMR-K) condition.

Example of connection SMR-T

- Intelligent staircase switch, the same use as CRM -4 , but with enlarged
possibility of control in mode \ldots PROG", it is possible to select time of possibility of control in mode „PROG", it is possible to select time of
delayed OFF by number of button pressing. Each pressing multiplies time set by potentiometer, it means that in case you set time to 5 min and press the button 3 times, then the output is automatically prolonged to 15 min . Output can be also switched off before time (reset) y long pressing of button (longer than 2 sec). switching of el. bulbs and also fluorescent lights.
Operating system switch:
ON- output is constantly ON (service mode
AUTO - timing according to adjusting by potentiometer in rang 30 s- 10 min.
with time prolongation option by number button Timing (in mode AUTO and PROG) is possible to be stopped by long

Output indication multif red LED, flashing at certain states
3 -wire or 4 -wire connection (it is possible to control input S by poten
CRM-42: Warning before switch OFF- output doubleflash 40 and 30 .
fruse with encase swith winhout warning flashes especially suite for use with energy-saving lamps, where frequent flashing may caus
damage to the light source 1-MODULE, DIN rail mountin

Connection
3 -wire connection 4 -wire connection

Symbol

Function
mode on
-the output is permanently closed in ON position.Control input
blocked.

MODE AUTO

pressing a control button in function after the set time period the output opens.
before switch OFF*
CRM-42F: without flashing
CRM-42

CRM-42F

MODE PROG (the illumination time is defined by number of button pressing)

- in function program the switched time is a sum of each time set by pressing the button. By pressing >2 s the ouput opens.
CRM-42: Warning before switch OFF- output doubleflash 40 and 30 sec CRM-42:Warning be
CRM-42F: without flashing

CRM-42F

VS(B,K)

VS(U)

782L
750L

Overview table

$\stackrel{\circ}{\lambda}$	$\begin{aligned} & \text { 高 } \\ & \text { a } \end{aligned}$			Other features				
					$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \underset{\sim}{E} \end{aligned}$			
vS116B/230	MINI	AC $230 \mathrm{~V} / 50.60 \mathrm{~Hz}$	$\begin{aligned} & 1 \times 16 \text { A changeover/ } \\ & \text { SPDT } \end{aligned}$	-	\times	\times	VS116/B230 MINI, with installation into junction box or ceiling that allows control of lights, shades or awnings drives	36
vS116K	1 M -IIN	AC 230 and AC/DC 24 V	$\begin{aligned} & 1 \times 16 \text { A changeover/ } \\ & \text { SPDT } \end{aligned}$	-	\bullet	-	as a separation relay (4kV), direct switching of appliances up to 4000 VA (e.g. heaters), well visible signalization, noiseless	36
vs116U	1 M -IIN	AC/DC 12.240 V	1x16 A changeover/ SPDT	-	\bullet	-	as VS116K, but multivoltage supply coil	36
vs308k	1 M -IIN	AC 230 and AC/DC 24 V	$\begin{aligned} & \text { 3x8A changeover/ } \\ & \text { TPDT } \end{aligned}$	-	\bullet	-	a "multiplication" of contacts, $3 x$ changeover contact/ 3PDT only in 1-MODULE, well visible signalization, noiseless	36
vs308U	1 M -IIN	AC/DC 12.240 V	$\begin{aligned} & 3 \times 8 \text { A changeover/ } \\ & \text { TPDT } \end{aligned}$	-	\bullet	-	as VS308k, but multivoltage supply coil	36
vs316/24	1 M -IIN	AC/DC 24 V	$\begin{aligned} & 3 \times 16 \text { A changeover/ } \\ & \text { TPDT } \end{aligned}$	-	\bullet	-	$3 x$ changeover contact in 1-MODULE, possibility of "multiplication" of contacts and in the same time possibility of switching high output, possibility of 3 phase switching	36
vs316/230	1 M -IIN	AC 230 V	3x16A Achangeover/ TPDT	-	-	-	as VS316/24, but AC 230V	36
782 L	PLUG-IN	$\begin{aligned} & \text { AC } 6-230 \mathrm{~V}, \\ & \mathrm{DC} C-110 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 4x6 A changeover/ } \\ & \text { 4PDT } \end{aligned}$	\bullet	\times	\times	compact small relay for installation into plug relay, basic version equipped by LED indication, detent and testing lever	38
750L	PLUG-IN	AC $6-230 \mathrm{~V}$, DC $6-110 \mathrm{~V}$	$\begin{aligned} & 3 \times 10 \text { A changeover/ } \\ & \text { 3PDT } \end{aligned}$	-	\times	\times	as 782 L , but into 11-pin round socket, $3 x$ changeover contact / 3PDT 10A/250 V	38

VS | Power relays

VS | Power relays

type	Current	Number of contacts	Design	Supplyeminals
VS116k	16 A	1	din (19)	A1-A2 $230 \mathrm{VAC} / \mathrm{Al}-\mathrm{A} 324 \mathrm{VaC/DC}$
vS116u	16 A	1	din (1M)	A1-A2 12-240 VaCIDC
vs1168/230	16 A	1	Box (min)	L-N230vac
v5308k	8 A	3	din (1M)	A1-A2 $230 \mathrm{VAC/A1}-\mathrm{AB} 24 \mathrm{VaC/DC}$
vS5384	8 A	3	din (19)	A1-A2 $12-240 \mathrm{VaC/DC}$
vs316/24	16A	3	$\operatorname{DiN}_{\text {(1M) }}$	A1-A2 $24 \mathrm{VaC/DC}$
vs316/230	16 A	3	din (19)	A1-A2 230 VaC

- Power relay used for switching larger load output, strengthen or "multiplying" contacts of the existing device.
- Relays VS316/24, VS316/230 enable connection to a 3 -phase circuit

In the design 1-MODULE, DIN rail mounting, output status indicated by
high intensity LED with choice of LED color (red, green, yellow, blue of
high intensity LED with choice of LED color (red, green, yellow, blue o
white LLD*)
sw116/B230 MINI, mounting in installation box or ceilings, enabling switching of lights, motors for blinds or awnings.
For VS116/B230 status of output indicated by LED on front panel of device.

Technical parameters	VS116B/230	VS116K	VS116U	VS308K	VS308U	VS316/24	VS316/230
Supply terminals:	L-N	A1-A2					
Voltage range:	AC $230 \mathrm{~V} /$ $50-60 \mathrm{~Hz}$	AC $230 \mathrm{~V} /$ $50-60 \mathrm{~Hz}$	$\mathrm{AC} / \mathrm{DC} 12-240 \mathrm{~V}$ $50-60 \mathrm{~Hz}$	$\text { AC } 230 \mathrm{~V} /$ $50-60 \mathrm{~Hz}$	AC/DC 12-240 V / $50-60 \mathrm{~Hz}$	AC/DC 24 V / $50-60 \mathrm{~Hz}$	AC $230 \mathrm{~V} /$ $50-60 \mathrm{~Hz}$
Burden (max):	$\begin{gathered} \text { AC } 7.5 \mathrm{VA} / \\ 1 \mathrm{w} \end{gathered}$	$\begin{gathered} \mathrm{AC} 7.5 \mathrm{VA} / \\ 1 \mathrm{w} \end{gathered}$	$\begin{gathered} \mathrm{AC} 0.7-3 \mathrm{VA} / \mathrm{DC} \\ 0.5-1.7 \mathrm{w} \end{gathered}$	$\begin{gathered} \mathrm{AC} 10.3 \mathrm{VA} / \\ 1.1 \mathrm{w} \end{gathered}$	$\begin{gathered} \mathrm{AC} 0.7-3 \mathrm{VA} / \mathrm{DC} \\ 0.5-1.7 \mathrm{~W} \end{gathered}$	$\begin{aligned} & 1.6 \mathrm{VA} / \\ & 1.2 \mathrm{~W} \end{aligned}$	2.5 VA
Supply terminals:	x	A1-A3	\times	A1-A3	x		
Voltage range:	\times	AC/DC 24 V ($50-60 \mathrm{~Hz}$)	x	AC/DC 24 V ($50-60 \mathrm{~Hz}$)	\times		
Burden:	\times	AC I va/deim	\times	aci la/dcim	x		
Supply voltage tolerance:	-15%; 10%						
Max. dissipated power				3 w			6 w
(Un+terminals):	4 w					8w	
Output							
Number of contacts:	$1 \times$ changeover/ SPDT (AgSnO ${ }_{2}$)			$3 \times$ changeover/TPDT (AgNi / Silver Alloy)		$3 \times$ changeover/ TPDT (AgSnO ${ }_{2}$)	
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$			8A/AC1		16A/AC1	
Breaking capacity:	4000VA/ AC1, 384W/ DC			2000VA/ AC1, 192W/DC		4000VA/ AC1, 384W/ DC	
Inrush current:	$30 \mathrm{~A} /<35$			$10 \mathrm{~A} /<35$		$30 \mathrm{~A} /<35$	
Switching voltage:	$250 \mathrm{VAC} 1 / 24 \mathrm{VDC}$						
Output indication:	red LED	high intensity of LED					
Mechanical life:	3×10^{7}					1×10^{7}	
Electrical life (AC1):	0.7×10^{5}					1×10^{5}	
Time between switching:	min. 25					20 ms	50 ms
Other information							
Operating temperature:	$-20 .+55^{\circ} \mathrm{C}$						
Storage temperature:	$-30 .+70^{\circ} \mathrm{C}$						
Electrical strength:	4 kV (supply-output)						
Operating position:	any						
Mounting:	free at connecting wire	DIN rail en 60715					
Protection degree:	1P30	IP40 from front panel//P20 terminals					
Overvoltage category:	III.						
Pollution degree:	2						
Max. cable size (mm):	$2 \times 0.75 \mathrm{~mm}^{2}$ (AWG 18), $3 \times 2.5 \mathrm{~mm}^{2}$ (AWG 10)			max. 1×2.5 or 2×1.5 max. 1×2.5 (AWG 12)			
Dimensions:	$\begin{aligned} & 49 \times 49 \times 21 \mathrm{~mm} \\ & \left({ }^{(2 \times 2 \times \times 2 \times 08}\right) \\ & 48 \mathrm{~g}(1.7 \mathrm{oz} .) \end{aligned}$	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.55^{\prime \prime}\right)$					
Weight:		56 g (20z)	59 g (2.1 oz.)	$78 \mathrm{~g}(2.75$ oz.)	$80 \mathrm{~g}(2.8$ oz)	90 g (3.17 oz.)	$93 \mathrm{~g}(3.3 \mathrm{oz}$)
Standards:	EN 61810-1, EN 61010-1						

Description

VS116K, vS116U

V5308K, VS308U

VS316/24, VS316/230

vS1168/230

EAN codes

VS116B/230 8595188147545					
VS116K/red	8595188122597	V5308k/red	8595188122696	VS316/24 red	8595188135771
VS116K/green	8595188122610	Vs308K/green	8595188122719	V5316/24 green	8595188136105
VS116K/yellow	8595188122580	Vs308k/yellow	8595188122689	VS316/24 yellow	8595188136129
VS116K/white	8595188122573	V5308K/white	8595188122672	VS316/24 white	8595188136
VS116K/blue	8595188122603	VS308K /blue	8595188122702	VS316/24 blue	8595188136112
VS116U/red	8595188124607	VS308U/red	8595188130103	VS316/230 red	8595188135559
VS116U/green	8595188136433	VS308U/green	8595188136440	VS316/230 green	8595188136075
VS116U /yellow	8595188138499	VS308U /yellow	8595188138529	VS316/230 yellow	85951881360
VS116U/white	8595188138482	V5308U/white	8595188138512	VS316/230 white	8595188136051
VS116U/blue	8595188138475	Vs308U/blue	8595188138505	Vs316/230 blue	8595188136068

Notes
Max. time of changeover of contact is 10 ms .
VS316/24 or VS316/230 enables switching of different phases or 3 phase voltage
*ossibility to choose blue, white and yellow color of LED for power relays line VS in case of minimal order quantity 100 pcs

Technical parameters	750L	782L
Contacts		
Number of switching contacts:	:	4
Contact material:	AgNi	AgNi
Rated voltage:	AC $250 \mathrm{~V} / 440 \mathrm{~V}(50-60 \mathrm{~Hz})$	AC $250 \mathrm{~V} / 250 \mathrm{~V}$ ($50-6 \mathrm{~Hz}$)
Rated current:	10 A	6 A
Peak current:	20 A	12 A
Switching capacity (AC1):	10A/250A	6A/250A
Switching capacity (AC3):	370w	125W
	(single-phase motor)	(single-phase motor)
Switching capacity (AC15):	$3 \mathrm{~A} / 12 \mathrm{~V} / 1.5 \mathrm{~A} / 240 \mathrm{~V}$	$1.5 \mathrm{~A} / 12 \mathrm{~V} / 0.75 \mathrm{~A} / 240 \mathrm{~V}$
Switching capacity (DC1):	$10 \mathrm{~A} / 24 \mathrm{VDC}$	$6 \mathrm{~A} / 24 \mathrm{VDC}$
Switching capacity (DC13):	0.22 $/ 120 \mathrm{~V} 0.1 \mathrm{~A} / 250 \mathrm{~V}$	$0.22 \mathrm{~A} / 120 \mathrm{~V} 0.1 \mathrm{~A} / 250 \mathrm{~V}$
Minimum switching voltage / current:	$5 \mathrm{~mA} / 5 \mathrm{~V}$	$5 \mathrm{~mA} / 5 \mathrm{~V}$
Coil	$1.5 \mathrm{~W} / \mathrm{DC}$	$1.5 \mathrm{~W} / \mathrm{DC}$
Rated Voltage (DC):	12,24, 48, 60, 110, 120, 220 V	$5,6,12,24,60,80,125,220 \mathrm{~V}$
Rated voltage ($\mathrm{AC}, 50-60 \mathrm{~Hz}$):	$12,24,48,60,$ $115,120,230,240 \mathrm{~V}$	$12,24,42,60,80$, $110,115,127,230,240 \mathrm{~V}$
Rated power (AC / DC):	AC $2.8 \mathrm{VA}(50 \mathrm{~Hz}) / 2.5 \mathrm{VA}$ $(60 \mathrm{~Hz}) / \mathrm{DC} 1.5 \mathrm{~W}$	AC 1.6VA/DC 0.9 W
Tolerance of supply voltage:	-20/+10\%	-20/+10\%
Isolating data		
Rated insulation voltage (AC):	2500 V	2500 V
Dielectric strength (AC)		
Coil -contact:	2500 V	2500 V
Contact-contact:	1500 V	1500 V
ISolating resistance at 500 VDC :	$10^{\prime} \Omega$	$10^{\prime} \Omega$
Distance contact - coil		
Air:	23 mm	$\geq 1.6 \mathrm{~mm}$
Surface:	24.2 mm	23.2 mm
General information		
Mechanical life:	$\geq 2 \times 10^{7}$	1×10^{7}
Electrical life (AC1):	$\geq 2 \times 10^{5} 10 \mathrm{~A} / 250 \mathrm{VAC}$	$\geq 10^{5} 6 \mathrm{~A} / 250 \mathrm{VAC}$
Max. switching frequency		
At rated load:	1200 cycles/ /his	1200 cycles/hrs
Without load:	12000 cycles/hrs	18000 cycles / hrs
Pick-up time / returning	max. $12 / 10 \mathrm{~ms}$	max. $10 / 8 \mathrm{~ms}$
Working temperature:	-40.. $+55^{\circ} \mathrm{C}\left(-40\right.$ to $\left.131^{\circ} \mathrm{F}\right)$	$-40 . .+55^{\circ} \mathrm{C}\left(-40\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperatur:	$-40 .+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	$-40 .+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Protection:	IP40 from the front panel	IP40 from the front panel
Dimensions:	$35 \times 35 \times 54.4 \mathrm{~mm}$	$27.5 \times 21.2 \times 35.6 \mathrm{~mm}$
Weight:	84g (302)	$31 \mathrm{~g}(1.10 \mathrm{oz}$
Standards:	EN 60947-4-1, EN 60947-5-1	EN 61810-1, EN 60255-1-00, EN 61810-7

- Used for switching a higher power (load) than the capacity of switched element = amplifier.
- For auxiliary lighting control, signalization, the relay interlockings, boilers, heaters.
$.3 \times$ changeover contacts of $10 \mathrm{~A}(\mathrm{AgNi})$ for 750 L .
Recommended sontacts of 6 A (AgNi) for 782L.
for 782L.

Product Type	Voltage [V]	Resistance [Ω]
AC voltage		
5012	AC 12	18.5
5024	AC 24	75
5048	AC 48	305
5060	AC 60	475
5115	AC 115	1840
5120	AC 120	1910
5230	AC 230	7080
5240	AC 240	7760
DC voltage		
1012	DC 12	110
1024	DC 24	430
1048	DC 48	1750
1060	DC 60	2700
1110	DC 110	9200
1120	DC 120	11000
1220	DC 220	37000

Coil data for 782L

Product Type	Voltage [V]	Resistance $[\Omega]$
AC voltage		
5006		9.8
5012	AC 6	39
5024	AC 12	39.5
5042	AC 24	158
5060	AC 42	470
5080	AC 60	930
5110	AC 80	1720
5115	AC 110	3450
5127	AC 115	3610
5330	AC 127	4000
5240	AC 320	16100
DC voltage	AC 240	16800
1005		
1006	DC 5	28
1012	DC 6	40
1024	DC 12	160
1060	DC 24	640
1080	DC 60	4000
1125	DC 80	7100
1220	DC 125	16000

Connection

750 L

782L

Socket

EAN code

750L/110V DC	8595188129992	782L/12V AC	8595188119085	ES-15/4N	8595188119245
$750 \mathrm{~L} / 20 \mathrm{VaC}$	8595188130028	782L/12V DC	8595188119030	ES-11	8595188129879 8595188136167
750L/22V AC	8595188130011	$782 \mathrm{~L} / 230 \mathrm{VaC}$	8595188119115	ES8	8595188136167
750L/12V DC	8595188129978	782L/24V AC	8595188119092	Clip to relay 750L	8595188192883 859518819276
$750 \mathrm{~L} / 230 \mathrm{VAC}$	859518819221	782L/24V DC	8595188119047	Clip to relay 782 L	8595188119276
750 L 24 V AC	859518819207	782L/6V DC	8595188129909		
750L/24V DC	8595188125147				
$750 \mathrm{~L} / 48 \mathrm{~V}$ DC	8595188129985				

Accessories

To ES-11 socket -for 750 L
Clip to relay 750: 16-1351

To ES-15/4N socket- for 782 L

Swivel label - TR1
The LED module, the protective diode and

\times with load over 300 VA is necessary to ensure sufficient cooling
Key to symbols

TYPE OF	bulbs, halogen lamps	low-voltage el.bulbs $12 / 24 \mathrm{~V}$ wound transformers	low-voltage el.bulbs $12 / 24 \mathrm{~V}$ electronic transformers	ESL dimmable compact fluorescent lamps	Dimmable LED bulbs
(symbols)	$\xrightarrow[R]{(M)}$	$\mathrm{LF}_{\mathrm{L}}^{\mathrm{L}} \mathrm{~L}$	$\begin{gathered} \square=-\sqrt{2} \\ c \end{gathered}$	$\begin{gathered} \text { ESL } \\ \hline-7 \end{gathered}$	(4) LED,

Demonstrated symbols are informative

Expandatory:

Dimmer with designated load:
R - resistive L- inductive
C- capacitive
ESL- energy saving bulbs
LED' - dimmable LED bulbs, designed for dimmers with phase-controlled rising edge (triac dimmers)
LED2 ${ }^{2}$ - dimmable LED bulbs designed for dimmers with phase or phase-to-phase phase control (dimmers with MOSFET)
$\mathbb{I P x x}$ protection - under normal conditions: normal conditions are understood as such conditions of operating an electrical device, installation and power IPxx protection - under normal conditions: normal conditions are understood as such conditions of operating an electrical device, installation and power
supply network for which the entire device is designed, produced and installed. Upon these normal conditions of use and upon normal maintenance, all protective devices must be effective throughout the entire expected service life of the product.

Recommendation for mounting modular dimmers: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4$) on side of the device to ensure better cooling of the
device.

Designated for dimming el. bulbs, halogen lights and halogen lights
with winding transformers and Dimmable LED1 with wind ${ }^{\text {annsformers and Dimmable LED }}$
Intelligent control of halogen lights, function of gradual switching on and dimming.

Values are set by potentiometers on front panel of the product, adjustable - maximum dim-up
speed (fluency) of dim-up

- speed (fluency) of dim-down
- time for which a light is on with maximum dim-up.

Output without contact: 1 x triac.
Clamp terminals.
Parallel connection of controlling pushbuttons is possible.

- Protection against over-temperature inside the product- switches out
put off + signalizes overheating by put off + signalizes overheating by LED flashing.
Note: possibility of start and finish adjustment up on 1 hour, device ha description DIM-2 1 h.
- 1-MODULE, DIN rail mounting.
' For more information, see page 41

Description

Recommendation for mounting: leave a gap of min. 0.5 module (approx Recommendation for mounting: leave a gap of min. 0.5 module (app.
9 mm) on side of the device to ensure better cooling of the device.

Connection

Function
Controlled via input 71 (button)

Dim-up delay-down is started
by a button. Cycle extension by a button. Cycle extension -
by re-pressing button (during the cycle).

Controlled via input T 2 (switch

The switch starts the cycle and
it stops on max.set brightness. it stops on max.set brightness.
After the switch is off, the cycle will continue until completed.

Technical parameters	DIM-5
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Burden (unloaded):	max. $7.5 \mathrm{VA} / 0.6 \mathrm{~W}$
Max. dissipated power:	1 w
Supply voltage tolerance:	-15\%; 10%
Supply indication:	green LED
Controlling	
Control terminals:	T-A1
Control voltage:	AC 230 V
Power control input:	max. 1.5 VA
Impulse length:	min. $80 \mathrm{~ms} / \mathrm{max}$. unlimited
Glow-lamps:	Yes
Max. amount of glow lamps connected to controlling input:	230 V - max. amount 50 pcs (measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{VAC}$)
Output	
Current rating:	2 A
Resistance load:	10-500 VA
Inductive load:	$10-250 \mathrm{VA}$
Output indication:	red LED
Other information	
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \mathrm{to} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting:	din rail EN 60775
Protection degree:	IP40 from front panel//P10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 2×2.5 or 1×4, with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.77^{\prime \prime} \times 2.5^{5}\right)$
Weigh:	$58 \mathrm{~g}(20 \mathrm{z}$)
Standards:	en 60669-2-1, en 61010-1

Recommendation for mounting: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4^{4 \prime}$) on side of the device to ensure better cooling of the device.

Designated for dimming el. bulbs, halogen lights and halogen lights with winding transformers and Dimmable LED
hort press turns light on/off, longer press (> 0.5 s) provides dim up/ hen switched off, brightness level is stored in a memory and when ON again it restores last brightness level.
Ooltage range: AC 230 V .
Contactless output.
ED output indication (with any level of brightness.
Possibility to connect control buttons in parallel.

- Clamp terminals.

Protection against over-heating inside the product - switches output off + signalizes overheating by LED flashing. For more information, see page 41

Description

Connection

Function

Symbol

* Due to a large number of light source types, the maximum load depends on the internal construction of dimmable light sources and their power
factor cos φ. The power factor of dimmable LEDS and ESL bulbs ranges factor $\cos \varphi$. The power factor of dimmable LEDS and ESL bulbs ranges from $\cos \varphi=0.95$ to 0.4 . An approximate value of maximum load may be
obtained by multiplying the load capacity of the dimmer by the power factor of the connected light source.

Warning: it is not allowed to connect inductive and capacitive loads at the same time.

Designed for dimming of incandescent bubb and halogen lights with Designed for dimming of incandescent bulbs and halogen lights with
wound or electronic transformer, dimmable light bulbs and dimmable LED'. Earallel buttons.

- Returns to last state upon re-energization
- Type of light source is set by switch-over on the front panel of device. - Min. luminance, set by potentiometer on the front panel, eliminate flashing of light sources.
DIM-15
Output status is indicated by red LED:
-flashes while heating overload, at the same time output is disconnected 1-MODULE version, DIN rail mounting, saddle terminals
SMR-M
an-controlled dimmer intended to be installed in an installatio Protection against excessive temperature inside the device - switches off the output.
${ }^{2}$ For more information, see page 4

Connection

DIM-15

SMR-M

Symbol
(SMR-M)

Light source type setting

Device description

Functions and controlling
short button press (<0.5s) turns Luminance setting
the light off or on

- long press (>0.55) enables slight regulation of light intensity possible only during decreasing of luminance by long button press
setting of minimal luminance by saving fluorescent lamps serves
for harmonizing of lowest light intensity prior its unprompted switching off

Connection example

Additional information
it is not possible to dim energy-saving lamps without marking: dimmable
an incorrect setting of light source has effect only on dimming range, it means neither dimmer or load get damaged
max. number of dimmable light sources depends on their internal structure
it is not recommended to connect light sources with diff erent types and brands, to one dimmer
list of dimmable sources on page 161

* When load is above 300 VA it is necessary to ensure sufficient cooling.

Recommendation for mounting: Leave a gap of min. 0.5 module (approx ,
Warning for DIM-14: it is not allowed to connect together loads of inductive and capacitive type in the same time.
designated for dimming of el. bulbs and halogen lights with wound or electronic transformer and Dimmable LED2
for switching and dimming of lights, control inputs for a button - short pressing switches ON/OFF, longer pressing (>0.5 s) enables grad ual light intensity setting
when switched off, brightness level is stored in a memory and when switched on again this last brightness level is restored
supply voltage: AC 230 V
output without contacts: $2 \times$ MOSFET
LED output indication (with any level of brightness) possibility of paral lel connection of control buttons

- Protection against over-heating inside the device - output off. Resistive, inductive or capacitive load, up to 500 W .
1-MODULE, DIN rail mounting.
For more information, see page

Connection

Function

Symbol

EAN codeSMR-S /230 V: 8595188123518SMR-U $/ 230 \mathrm{~V}: 8595188130738$		
Technical parameters	SMR-S	SMR-U
Connection:	3-wire con, without neutral	4-wire con, with neutral
Voltage range:	230 VAC	50 Hz
Burden (unloaded):	max. 0.66	/0.55 W
Max. dissipated power:	3	
Supply voltage tolerance:	-15\%;	
Output		
Resistive load:	10-300 VA	$500 \mathrm{VA*}$
Inductive load:	10-150 VA	$500 \mathrm{VA*}$
Capacitive load:	\times	$500 \mathrm{VA}{ }^{\text {a }}$
Control		
Control voltage:	AC 230 V	
Current:	max. 3 mA	
Impulse lenght:	min. $50 \mathrm{~ms} / \mathrm{max}$. unlimited	
Glow tubes connection:	Yes	
Max. amount of glow lamps connected to controlling input:	230 V - max. amount 10 pcs (measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{~V} \mathrm{AC}$)	
Other information		
Operating temperature:	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{Fto} 122^{\circ} \mathrm{F}\right)$	
Operating position:	any	
Mounting:	free at connecting wires	
Protection degree:	1 P 30 in standard conditions***	
Overvoltage category:	III.	
Pollution degre:	2	
Fus	1.6A/250 V	\times
Connection wires:	solid wires $0.75 \mathrm{~mm}^{2}$ (AWG 18)/90 mm (3.5")	
Glow lamps in a button:	max. number 10	
Dimensions:	$49 \times 49 \times 13 \mathrm{~mm}\left(1.9^{\prime \prime} \times 1.9^{\prime \prime} \times 0.5^{\prime \prime}\right)$	
Weight:	$30 \mathrm{~g}(1.06$ oz)	$32 \mathrm{~g}(1.1302$.
Standards:	en 61010-1, EN 60669-2-1	

*ith load over 300 VA is necessay to
.

* for more information see page 41

Atton-controlled dimers desinted for furh mounting into wir ing box.
Possible to control from more places (parallel connections)

- Protection against temperature overrun inside the device.
-Designated for dimming el. bulbs, halogen lights and halogen light with winding transformers and Dimmable LED 3-wire connection, functional without neutral
max. load: 300 VA (el. bulbs or halogen lights with wound transform er)
contactless output $-1 x$ triac
- with exchangeable fuse

SMR-U:
Designed for dimming of incandescent bulbs and halogen lights with wound or electronic transformer and Dimmable LED².
max. load: 500 VA (el. bulbs or halogen lights with electronic wound transformer)
tion - output off in case of short-circuit or overload.
or verioad.
For more information, see page 41

Description of SMR-S

Connection

arning: it cannot be used for fluorescent lights and energy saving
MR-U:It is not allowed to connect together loads of inductive and capacitive type in the same time.

Function

Short press (<0.5s) turns a light on, another short press turns it off longer press (>0.55) causes a gradual requlation of light intensit min-max-min round until the button is released. After releasing a set intensity is kept in memory, further short presses turn the light on/o press. Atter de-energising the relay remembers the set value.

$\stackrel{\circ}{\Sigma}$	$\begin{aligned} & \frac{\overline{0}}{\bar{y}} \\ & \hline 0 \end{aligned}$		Output						$\begin{gathered} \text { Protection } \\ \text { against overload } \end{gathered}$				
			Y	¢					$\begin{aligned} & \text { 䯧 } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{n} \end{aligned}$				
ZNP-10-24	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	-	-	\times	$\begin{aligned} & \text { AC } 24 \mathrm{~V} \\ & \text { DC } 24 \mathrm{~V} \end{aligned}$	0.4 A	x	-	\times	\times	DC and AC nonstabilized output voltage 24 V - where it is not required or is stabilized later	57
ZSR-30	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	-	-	-	$\begin{aligned} & \text { DC5-24V } \\ & \text { AC } 24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~A}- \\ & 0.3 \mathrm{~A} \end{aligned}$	s	-	-	\times	regulated output voltage in a wide range $\mathrm{DC} 5-24 \mathrm{~V}$: possibility to adjust output voltage with load according to request...)	57
PSB-10-12	MINI-BOX	AC 110-250 V	x	-	-	DC 12 V	0.84 A	s	\times	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 10 \mathrm{~W}$, box	54
PSB-10-24	MINI-BOX	AC 110-250 V	x	-	\bullet	DC 24V	0.42 A	s	\times	-	-	stabilized switching power supply with fixed output voltage 24 V / 10 W, box	54
PS-10-12	1M-DIN	$\begin{gathered} \mathrm{AC} 184-250 \mathrm{~V} \text {, } \\ -20 /+10 \% \end{gathered}$	x	-	\bullet	DC 12 V	0.84 A	s	-	-	-	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 10 \mathrm{~W}, 1$ module	54
PS-10-24	1M-DIN	$\begin{gathered} \mathrm{AC} 184-250 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$	x	-	\bullet	DC 24V	0.42 A	s	-	-	-	stabilized switching power supply with fixed output voltage $24 \mathrm{~V} / 10 \mathrm{~W}, 1$ module	54
PS-30-12	3M-DIN	$\begin{gathered} \text { AC } 100-250 \mathrm{~V} \text {, } \\ -20 /+10 \% \end{gathered}$	x	-	-	DC 12 V	2.5 A	s	-	-	-	stabilized switching power supply with fixed output voltage 12 V / 30 W, 3 module	54
PS-30-24	3M-DIN	$\begin{gathered} \mathrm{AC} 100-250 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$	x	-	-	DC 24V	1.25 A	s	\bullet	-	-	stabilized switching power supply with fixed output voltage 24 V / 30 W, 3 module	54
PS-30-R	3M-DIN	$\begin{gathered} \text { AC } 100-250 \mathrm{~V}, \\ -15 /+10 \% \end{gathered}$	\times	\bullet	-	$\begin{gathered} \text { DC } 12- \\ 24 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.5 \mathrm{~A}- \\ & 1.25 \mathrm{~A} \end{aligned}$	5	-	-	-	stabilized switching power supply with fixed output voltage 2-24 V / 30 W, 3 module	54
PS-100-12	6M-DIN	$\begin{gathered} \text { AC } 100-250 \mathrm{~V} \text {, } \\ -20 /+10 \% \end{gathered}$	x	-	-	DC 12 V	8.4A	s	\bullet	-	-	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 100 \mathrm{~W}, 6$ module	54
PS-100-24	6M-DIN	AC 100-250V, -20/+10\%	\times	-	\bullet	DC 24V	4.2 A	s	-	-	-	stabilized switching power supply with fixed output voltage 24V / 100W, 6 module	54
DR-60-12	4.5M-DIN	$\begin{aligned} & \text { AC } 100-240 \mathrm{~V} \\ & \text { DC } 124-370 \mathrm{~V} \end{aligned}$	x	-	x	DC 12 V	4.5 A	s	x	\times	\times	efficient switching power supply of DC voltage $12 \mathrm{~V} / 54 \mathrm{~W}$, wide range of input voltage (AC 100-240 and DC 124-370 V)	56
DR-60-24	4.5M-DIN	$\begin{aligned} & \text { AC 100-240V } \\ & \text { DC } 124-370 \mathrm{~V} \end{aligned}$	\times	-	\times	DC 24V	2.5 A	s	x	x	\times	efficient switching power supply of DC voltage $24 \mathrm{~V} / 60 \mathrm{~W}$, wide range of input voltage (AC 100-240 and DC 124-370 V)	56
ZTR-8-8	2M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	\bullet	\times	x	8 V	1A	\times	x	x	-		58
ZTR-8-12	2M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	\bullet	x	x	12 V	0.66A	\times	\times	\times	-	bell transformer (short-circuit-proof) for supplying of bells, door openers, home call-boxes	58
ZTR-15-12	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & +/-10 \% \end{aligned}$	-	x	x	4-8-12V	2-1.5-1A	x	\times	x	-		58

Nonstabilized AC
Bell transformer

PSB-10: switching stabilized power supplies with fixed output voltage for mounting into an installation box
-PSB-10-24 - stabilized power supply $12 \mathrm{~V} / 10 \mathrm{~W}$.
PS-10: switching stabilized power supplies with fixed output voltage, version 1-module.
PS-10-12 - stabilized power supply $12 \mathrm{~V} / 10 \mathrm{~W}$.
-PS-30: switching stabilized power supplies, version 3-module.
-PS-30-12- -stabilized power supply with fixed outputvoltage $12 \mathrm{~V} / 30 \mathrm{~W}$. PS-30-24-stabilized power supply with fixed outtut voltage $24 \mathrm{~V} / 30 \mathrm{~W}$ PS-30-R - stabilized regulated power supply $12-24 \mathrm{~V} / 30 \mathrm{~W}$.
PS-100: stabilized power supply with fixed output voltage, version 6 -module.
-PS-100-12 - stabilized power supply $12 \mathrm{~V} / 100 \mathrm{~W}$.
-PS-100-24 - stabilized power supply $24 \mathrm{~V} / 100 \mathrm{~W}$.

- Output current is limited by electronic fuse, in case maximal current is exceeded, the device switches off and after a shot time interval again switches on.
-Indication of output voltage by green LED on front panel (except PSB-10) Temperature protection - if temperature is exceeded, the device switches off and after cooled down, it switches on again.

Technical parameters	PSB-10-12 PSB-10-24	PS-10-12	PS-10-24	PS-30-12	PS-30-24	PS-30-R	PS-100-12 P	PS-100-24
Input								
Voltage range:	AC $110-250 \mathrm{~V} / 50-60 \mathrm{~Hz}$	AC $184-250 \mathrm{~V} / 50-60 \mathrm{~Hz}$		AC $100-250 \mathrm{~V} / 50-60 \mathrm{~Hz}$			AC $100-250 \mathrm{~V}$	/ $50-60 \mathrm{~Hz}$
Burden without load (max):	$3 \mathrm{VA} / 0.5 \mathrm{~W}$	$5 \mathrm{VA} / 2 \mathrm{~W}$		9VA/1w	$10 \mathrm{VA} / 1.5 \mathrm{~W}$	$10 \mathrm{VA} / 1.7 \mathrm{~W}$	$12 \mathrm{VA} / 2 \mathrm{~W}$	
Burden with full load (max):	$26 \mathrm{VA} / 13 \mathrm{~W}$	$25 \mathrm{VA} / 13 \mathrm{~W}$		$70 \mathrm{VA} / 37 \mathrm{~W}$			195 VA/	121 w
Protection:	\times	fuse TIA		fuse T 2 A			fuse T3.15A	
Output								
Output voltage DC/ max.	12V/ 24V/	12.2V/	24.2V/	$12.2 \mathrm{~V} /$	24.2V/	$12.2 \mathrm{~V} / 2.5 \mathrm{~A}$	12.2V/	24.2V/
current:	$0.84 \mathrm{~A} \quad 0.42 \mathrm{~A}$	0.84 A	0.42 A	2.5 A	1.25 A	$24.2 \mathrm{~V} / 1.25 \mathrm{~A}$	8.4 A	4.2 A
Tolerance of output voltage:	$\pm 2 \%$	$\pm 2 \%$		$\pm 2 \%$		$\pm 3 \%$	$\pm 2 \%$	
Output indication:	\times	green LED						
Wave of off-load output voltage:	40 mv	80 mv		30 mv		40 mv	1 V	
Wave of output voltage with max load:	380 mV	20 mv		80 mV		500 mV	40 mv	
Time delay after connection:	max. 15	max. is		max. 5 s		max. 15	max. 35	
Time delay after over-load:	max. 15	max. is		max. 15			max. 0.55	
Efficiency:	> 75%	> 75%		> 82%		> 81%	>82\%	
Electronic fuse:	electronic protections short-circuit, over load, over voltage (from 120% of rated output)							
Other information								
Working humidity:	20. 90% RH							
Operating temperature:	$-20^{\circ} \mathrm{C} \mathrm{to}+40^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 104^{\circ} \mathrm{F}\right)$							
Storage temperature:	$-40^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185{ }^{\circ} \mathrm{F}\right)-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.885^{\circ} \mathrm{F}\right)$			$-25^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{Fto} 185^{\circ} \mathrm{F}\right)$	
Electrical strength input output:	4 kV							
Protection degre:	IP 30	IP40 device/PP20 in-built in distribution board						
Overvoltage category:		I.						
Polution degree:	2							
Max. cable size (mm$)^{2}$:								
	solid wire CY, $4 \times 0.75 \mathrm{~mm}^{2}$ (AWG 18)	Solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 12)						
Connection wires:				-				
Dimensions:	$49 \times 49 \times 21 \mathrm{~mm}\left(1.9 \times 1.9 \times 0.88^{\prime \prime}\right)$	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\text {a }}\right.$		$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2.1 .^{\prime \prime} \times 2.6^{\prime \prime}\right)$			$90 \times 105 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 4.1{ }^{1 \times 2.6)}\right.$	
Weight:	$78 \mathrm{~g}(2.60 \mathrm{z}) \quad 78 \mathrm{~g}(2.6 \mathrm{oz})$	65 g (2.3 oz.)	$65 \mathrm{~g}(2.302$.	$160 \mathrm{~g}(5.60 \mathrm{z}$.	$160 \mathrm{~g}(5.6 \mathrm{oz}$)	163 g (5.8 oz.)	\|377 g (13.3 02.) ${ }^{3}$	377 g (13.302.)
Standards:	EN 61204-1, EN 61204-3, EN 61204-7							

Device description

- Stabilized switching power supply

Input voltage (Uprim) in a wide range $100-240 \mathrm{~V} \mathrm{AC}$

- DR-60-12: power supply with fixed output voltage DC 12 V ,
stabilized 54 W
ilized 54 W
- DR-60-24: power
stabilized 60 W .
-Max. load $12 \mathrm{~V}-4.5 \mathrm{~A}, 24 \mathrm{~V}-2.5 \mathrm{~A}$.
- Electronic protection of short-Circuit, over-loading, over-voltage, fin setting of output voltage by trimmer in a range $\pm 10 \%$
- LED power indicator light, viewable from the front pane
-4.5-MODULE, DIN rail mounting, isulation class II.

Description

Temminal supply voltage
Upim

Connection

Symbol

WARNING!

Values of max. load are valid for (operational) temperature.
Total loads on all output terminals may not exceed this values:
-by supplying $230 \mathrm{~V}-253 \mathrm{~V}-8 \mathrm{~W}$
from $230 \mathrm{~V} \ldots . .207 \mathrm{~V}$ output power is proportionately decreesing onto 5 W

Regulated stabilized power supply ZSR-30
Supply of various devices and appliances by safe voltage with fully gal not val AC 230 V . main.

- Output voltage: DC $5-24 \mathrm{~V}$ stab., DC 24 V unstab. and AC 24 V .
- Exceeded current limit values is indicated by LED flashing.
-When there is full short-circuit, output is disconnected, output current
is limited by an electronic fus
3-MODULE, DIN rail mounting
Nonstabilized power supply ZNP-10-24V
- $A C$ and $D C$ output voltage 24 V , nonstabilized.
- AC and DC output voltage 24 V , nonstabiliz
- Protection against short-circuit and overload by a safety fuse.
- Input voltage: AC 230 V.
-3-MODULE, DIN rail mounting
Description
ZSR-30

Connection
ZSR-3

zNP-10

sou

Accessories of twilight switches

MEMORY RELAYS

MR

CONTROL AND SIGNALLING DEVICES

USS

Overview table

- Is used to control lights on the basis of ambient light intensity
- Used for switching street illumination and garden lights, illumination of advertisements, shop windows, etc.

Control input for additiong to set level on the device.
Level of illumination adjustable in two ran swith, preswitch etc
1-100 Ix and $100-50000$ I.
Adjustable time delay to eliminate short term fluctuation in illumination - External sensor IP44 suitable for mounting on the wall (cover and holder of a sensor are a part of the package).

- Supply voltage AC 230 V or AC/DC $12-240 \mathrm{~V}$
- Output contact: $1 \times$ changeover/ SPDT 16 A.
- Red LED output indication.
$\cdot 1$-MODULE, DIN rail mounting

Description

Connection

Description of DIP switch

Symbol

Is used for control of lights on the basis of ambient light intensity and real time (combination of SOU-1 and time switch clock SHT-1 in on device).
are not required.

- Adjustable light intensity $10-500001$

Function „random switching" house when nobody is at home.
Switching: according to a program (AUTO) / permanently manual ran Switching: according to a program (AUTO)/ permanently manual / ran
dom (CUBE). rernal sen er and sensors are part of delivery).
Sealable transparent cover of front panel.

- Backup of data and time by battery (reserve battery up to 3 years). - Easy replacement of backup battery with plug-in module located on front panelof device (no disassembly required).
2-MODULE, DIN rail mounting
Description

Description of visual elements on the display

Connection
Symbol

Plug-in module

-Independent switch units designed for flexible controlling and switching
of power circuits.

- USS - "Do It Yourself" $=$ it is possible to "click into" different types - Units are delivered as components and configured by the user.
- 15 types of units: switches, push buttons, signal lights of different col ours including flashing lights units are replaceable also for future (for
example when an application is changed, extended, etc.) example when an application is changed, extended, etc...). -It is possible to place up to two units into one MODULE (for example $2 x$
switch, $2 x$ signalling lights or combinations) $=$ saves space in switch board panels. - 1 -MODULE $\left(90 \times 17.6 \times 64 \mathrm{~mm} / 3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime}\right)$, DIN rail mounting - Operating temperature $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$. -M3 screw with clamp terminals.

$\triangle{ }^{\oplus}$

 Make your own device USS - easy and intelligent solution

$\begin{aligned} & \text { BLIND FLANGE } \\ & \text { Used to fill in an }\end{aligned}$
sed to fill in an empty position in the front panel of the USs
Sodule. Dimensions: $21 \times 15 \times 7 \mathrm{~mm}\left(0.83^{\prime \prime} \times 0.599^{\prime \prime} \times 0.28^{\prime \prime}\right.$.,
SWITCHES, PUSH BUTTONS
Hey have a low uplift and a large fingerboard. High quality
 of Useff lifif.
Unit: $01-06$
SWITCCES WITH GLOW LAMP
Swith Ind Signalization in one unit. Signalization is caried out
by a alow lamp in dolly including series resistance. It is oossible by a glow lamp in dolly including series resistance. It is possibe
to instal it for permanent indication orfor a in intermittend by con tact of the switch. Dimensions: $21 \times 15 \times 20 \mathrm{~mm}\left(0.83^{\prime \prime} \times 0.59^{\prime \prime} \times 0.79^{\prime \prime}\right)$.
Colours. :ed, green, yellow. Colours: red, green, yellow.
Supply voltage of the signal Unpply voltage of the signaling light: AC 250 V .

HIGALLMinesconce SMD/LED that illuminates the entire button
area surface. Incut voltage can be either AC 230 V or AC/IDC 24 V area surface. Input voltage can be either AC 230 V orACIC
(outuut light may vary. Red sig. light is delivered also in a flashing version. Unit: 14
Colours: 14 ged green, yellow, white, blue. Unit: $10-15$ Colours: red, green, yellow, white, blue. Unitit $10-15$
Dimensions: $21 \times 15 \times 14 \mathrm{~mm}\left(0.83^{\prime \prime} \times 0.59{ }^{\circ} \times 0.55^{\prime \prime}\right)$
Terminal connection Laser marking

Overview table

Relays monitor voltage

Type	$\frac{.5}{\stackrel{\rightharpoonup}{b}}$		Secure variables							Setting			Description	®
			$\begin{aligned} & \text { 曾 } \\ & \text { 年 } \end{aligned}$		$\stackrel{\rightharpoonup}{\sim}$	v	$\frac{\stackrel{y}{\underline{訁}}}{\overline{\text { ®un }}}$		$\begin{aligned} & \text { 言 } \\ & \text { en } \\ & \text { 妾 } \end{aligned}$	$\frac{\text { ते }}{\mathrm{o}}$				
HRN－33	${ }^{1-m}$	$\begin{aligned} & \text { from } \\ & \text { monitored } \end{aligned}$	1	AC 48－276V	－	－	\times	\times	\times	－	\times	\times	For all types，the delay is adjustable from 0－10 seconds（to eliminate short－term outages or peaks）． （Umax）．	70
HRN－34	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	1	DC6－30V	－	\bullet	\times	\times	\times	－	\times	\times		
HRN－35	$1-\mathrm{M}$		1	AC 48－276V	－	\bullet	\times	\times	\times	－	\times	\times		
HRN－37	1－M	$\underset{\substack{\text { from } \\ \text { monitored }}}{\text { den }}$	1	AC 24－150V	－	－	\times	\times	\times	－	\times	\times		
HRN－63	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitored } \end{aligned}$	1	AC 48－276V	－	－	\times	\times	\times	－	\times	\times		
HRN64	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitored } \end{aligned}$	1	DC6．30V	－	\bullet	\times	\times	\times	－	\times	\times		
HRN－67	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitored } \end{aligned}$	1	AC 24－150V	－	－	\times	\times	\times	－	\times	\times		
$\begin{aligned} & \text { HRN-41/230V } \\ & \text { HRN-41/110V } \\ & \text { HRN-41/400V } \\ & \text { HRN-41/24V } \end{aligned}$	3－M	$\begin{gathered} \text { AC } 230 \mathrm{~V} \\ \text { AC110V } \\ \text { ACCOOV } \\ \text { AC } 1024 \mathrm{~V} \end{gathered}$	1	AC／DC 50 V ACIDC 160 V AC／DC 500 V	－	－	\times	\times	\times	－	－	－	Second relay function（independent／parallel）	72
$\begin{aligned} & \text { HRN-42/230V } \\ & \text { HRN } 2 / 2 / 10 \mathrm{~V} \\ & \text { HRN-42/400V } \\ & \text { HRN-42/24V } \end{aligned}$	3－M	$\begin{aligned} & \text { AC230V } \\ & A C 110 V \\ & A C O O V \\ & A C D C 24 V \end{aligned}$	1	$\begin{aligned} & \text { AC/DC } 50 \mathrm{~V} \\ & \text { AC/DC } 160 \mathrm{~V} \\ & \text { A/IDC 500V } \end{aligned}$	－	－	\times	\times	\times	－	－	－		72
	3－M		3	AC3 $384-480 \mathrm{~V}$	－	－	－	－	－	－	－	－	2 output reays functions of the second relay may be selected	
HRNN－4NN／230V HRN－33N110V HRN－43N／400V HRN－43N／24V	3－M	$\begin{aligned} & \text { AC } 2300 \\ & A C C 1100 \\ & A C C O D \\ & A C D C 24 V \end{aligned}$	3	AC3 4 48－276V	－	－	－	－	－	－	－	－		74
HRN－55	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	3	AC3 $3300-500 \mathrm{~V}$	\times	\times	－	－	\times	－	＊	\times	Power supply from all phases，i．e．the relay function is preserved even if one phase fails．	77
HRN－S5N	1－M		3	AC $3 \times 172-287 \mathrm{~V}$	\times	\times	－	－	\times	－	x	\times	Power supply L1－N，i．e．the relay also monitors the neutral wire interruption．	77
HRN－57	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitored } \end{aligned}$	3	AC3 3 300－500V	－	－	－	\times	\times	－	\times	\times	Power supply from all phases，i．e．the relay function is preserved even if one phase fails．	79
HRN－57N	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitored } \end{aligned}$	3	AC 3x 172－287V	－	－	－	\times	\times	－	\times	\times	Power supply L1－N，i．e．the relay also monitors the neutral wire interruption，replacement for HRN－52．	79
HRN．54	${ }^{1-m}$	$\underset{\substack{\text { foom } \\ \text { monitored }}}{\text { den }}$	3	AC $3 \times 300-500 \mathrm{~V}$	－	－	－	－	＊	－	\times	\times	If the supply voltage falls below 60% of Un（OFF lower level）， the relay will immediately disconnects with no delay Power supply from all phases，i．e．the relay function is preserved even if one phase fails．	76
HRN－54N	${ }^{1-m}$		3	AC3x 172－287V	－	－	－	－	\times	－	\times	\times	If the supply voltage falls below 60% of Un（OFF lower level）， the relay will immediately disconnects with no delay Power supply L1－N，i．e．the relay also monitors the neutral wire interruption．	76
$\begin{aligned} & \text { HRN-56/120 } \\ & \text { HRN-566/208 } \\ & \text { HRN-56/240 } \\ & \text { HRN-56/400 } \end{aligned}$	1－M	$\underset{\substack{\text { from } \\ \text { monitoed }}}{\text { ded }}$	3		\times	－	－	－	x	－	\times	\times	Thanks to the power supply from all three phases，the relay is operational even if one phase fails．	${ }^{78}$
$\begin{aligned} & \text { HRN-56/480 } \\ & \text { RRN-56/57 } \end{aligned}$	3－M	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	3		\times	－	－	－	\times	－	\times	\times		

Signal relays

Relay for frequency monitoring

Relay for factor cos－φ monitoring

Type	$\begin{aligned} & \text { 高 } \\ & \text { an } \end{aligned}$		Secure variables				Setting			Description	这
			$\begin{aligned} & \text { 离 } \\ & \text { 豆 } \end{aligned}$	觡茄	$\begin{gathered} \text { 合 } \\ \end{gathered}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{g}} \\ \stackrel{y}{6} \end{gathered}$	$\frac{\text { à }}{\text { a }}$				
$\begin{aligned} & \cos -2 / 230 \mathrm{~V} \\ & \cos -2 / 110 \mathrm{v} \\ & \cos -2 / 40 \mathrm{ov} \\ & \cos -2 / 24 \mathrm{~V} \\ & \hline \end{aligned}$	3－M	$\begin{aligned} & \text { AC } 2300 \\ & A C 100 \\ & A C C H 00 \\ & A C D C 24 V \end{aligned}$	3	0.10 .099	－	－	－	－	－	Two output relays，one independent relay for each level Galvanically separated power supply．	82

Relay for current monitor													
Type	呂		Secure variables				Setting					Description	\％
			$\begin{aligned} & \text { 畄 } \\ & \frac{\underline{2}}{2} \end{aligned}$	$\begin{aligned} & \text { o. } \\ & \text { 亳 } \end{aligned}$	－	v	$\frac{\text { 言 }}{0}$			－	v		
PR132	${ }^{1-M}$	$\begin{gathered} \text { AC 24-240V } \\ \text { DC } 24 \mathrm{~V} \end{gathered}$	1	AC 1－20 A	－	\times	\times	\times	\times	－	\times	Exceeding the current value－the current flowing through the monitored conductor must not exceed 100 A even on a short－term basis．	84
PRI－41／230V PRI－41／24V	3－M	$\begin{gathered} A C 230 v \\ A C(D C 24 V \end{gathered}$	1	AC／DC 1.6 A AC／DC 16 A AC／DC 16	－	－	－	－	－	－	－	The adjustable delay for elimination of short－term outages and peaks for every level Galvanically separated power supply．	86
PRI－42／230V PRI－42／24V	3－M	$\begin{aligned} & \text { AC230V } \\ & \text { AC/DC } 24 \mathrm{~V} \end{aligned}$	1	$\begin{aligned} & A C I D C 1.6 \mathrm{~A} \\ & A C D C A \\ & A C D C 16 \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	－	－	－	－	－	－	－	The adjustable delay for elimination of short－term outages and peaks for every level． Galvanically separated power supply．	86
PRI－51／0．5 PRI－51／1 PR1－51／5 PRI－51／8 PRI－51／16	${ }^{1-M}$	$\begin{gathered} \text { AC 24-240V } \\ \text { DC } 24 \mathrm{~V} \end{gathered}$	1	AC 0．05－0．5 A AC 0．2－2 A AC $0.5-5 \mathrm{~A}$ AC 0．8－8 A	－	\times	－	\times	\times	－	\times	May be used for scanning the current from the current transformer－up to 600A． Power supply is galvanically separated from the measured current	85
PR1－52	${ }^{1-M}$	AC230 V	1	AC $0.5-25 \mathrm{~A}$	－	\times	－	\times	\times	－	\times	May be used for scanning the current from the external current transformer－up to 600A	88
$\begin{gathered} \text { PRRL53/1 } \\ \text { PR } 53 / 5 \end{gathered}$	6－M	$\begin{gathered} \mathrm{ACDCDC} \\ 24-240 \mathrm{~V} \end{gathered}$	3	$\begin{aligned} & \mathrm{AC} 3 \times 0.4-1.2 \mathrm{~A} \\ & \mathrm{AC} 3 \times 2-6 \mathrm{~A} \end{aligned}$	－	－	－	\times	\times	－	－	Monitors the drop in the strength of current below the preset value．Monitors exceeding the preset value．	89

Level switches

Type	$\begin{aligned} & \frac{5}{\square} \\ & \frac{\Delta}{\Delta} \end{aligned}$		Secure variables		Setting			Description	咢
			首爻晨	耪安	$\frac{\text { ¢ }}{\text { ¢ }}$				
HRH－8／230V HRH－8／110V HRH－8／400V HRH－8／24V HRH－8／24	3－M	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & \text { AC } 1410 \mathrm{~V} \\ & \text { AC } 40 \mathrm{~V} 24 \mathrm{~V} \end{aligned}$	－	－	－	－	－	Sensitivity adjustable by potentiometer Galvanically separated power supply．	96
HRH－4／230V HRH－4／24V	set	$\begin{gathered} A C 230 v \\ A C D C 24 V \\ A C D \end{gathered}$	－	－	－	－	－	Unit with no protection devices－adequate protection elemen needs to be integrated before the unit．Ingress protection of the assembly is IP55	91
HRH－5	${ }^{1-m}$	$\begin{gathered} \text { ACIDC } \\ 24-240 \mathrm{~V} \end{gathered}$	－	－	－	－	－	Measuring the frequency of 10 Hz will protect liquid from polarisation and measuring pr Galv．separated power supply．	90
нвн－G／AC HRH－6／DC	$\begin{gathered} \text { box } \\ \text { \|1865 } \end{gathered}$	$\begin{gathered} \text { AC 230V } \\ \text { ACDC } 12-24 \mathrm{~V} \end{gathered}$	－	－＊	－	－	－	＊devices mainly designated for monitoring water level in fire－engine tanks．	92
нвн－7	$\underset{\substack{\text { box } \\ \text { IP65 }}}{ }$	$\begin{gathered} \text { ACIDC } \\ 24-240 \mathrm{~V} \end{gathered}$	－	－	－	－	－	suitable to work in harsh conditions due to the high degree of protection IP65．	94
HrH－vs	set	$\begin{gathered} 230 / 400 \mathrm{~V} \\ \mathrm{AC} \\ 50-60 \mathrm{~Hz} \end{gathered}$	－	－	－	－	－		
HRH－MS－1A HRH－MS－1．6A	set	$\begin{gathered} 230 / 400 \mathrm{~V} \\ \mathrm{AC} \\ 506 \mathrm{OHz} \end{gathered}$	－	－	－	－	－	Level sets placed in the control cabinet with IP65 protection （protected against dust and spraying water）where everything is already connected．	98
HRH－MS－VS－2．5A HRH－MS－VS－4A HRH－MS－VS－6．3A	set	$\begin{gathered} 230 / 400 \mathrm{~V} \\ \mathrm{AC} \\ 50-60 \mathrm{~Hz} \end{gathered}$	－	－	－	－	－		

-It serves to control supply voltage for appliances sensitive to supply tolerance, protection of the device against under/over voltage.
HRN-3x is band voltage relay, HRN-6x is over/under voltage relay. For
difference-see graph of function.

- HRN-33, HRN-63
monitors Voltage in range AC $48-276 \mathrm{~V}$
HRN-34, HRN-64 can be monitored independently
like HRN-33, but voltage range is DC $6-30 \mathrm{~V}$
monito ing of battery circuits (24 V)
HRN-35
- - like HRN
like $H R N-33$, but independent output relays for each voltage leve
switching of othe
HRN-37, HRN-67
- like HRN-33, mo
like HRN-33, monitors voltage in range AC 24-150 V
it is possible to monitor level of overvoltage and undervoltage
Adjustable time delay for all types is $0-10 \mathrm{~s}$ (to eliminate short voltage drops or peaks).
Voltage Umin adjusted as \% of Umax
3 -state indication - LEDs indicating normal state and 2 fauls states.
Supply from monitored voltage (monitors level of its own supply). 1-MODULE, DIN rail mounting.

Description

HRN-35

Function HRN- $33,34,35,37$ (band voltage relay)
HRN-33
HRN-37

HRN-34

HRN-35

Function HRN-63, 64,67 (over/under voltage relay)

Monitoring relay series $H R N-3 x$ monitors level of voltage in single - phase circuits. Monitored voltage serves also as supply voltage. It is possible to he output is activated. HRN- 33 and HRN- 34 - in normal state the output relay is permanently switched. It switches off when there is a limit setings. This combination of linkage of the output relay is advantageous when the full failure of supply (monitored) voltage is considered to be a
faulty state in the same way as a decrease of voltage within the set level. Uutput relay is in both situations always switched off. Differently HRN-35 version uses indipendent relay for each level, in nor mal state it is switched off. If the upper level is exceeded (for example overvoltage) 1 relay switches on, when the bottom level (e.g. undervolt-
age) is exceeded 2 relay switches. It is thus possible to see the particular faulty state. To eliminate short peaks in the main the time delay, which is possible to be set in range $0-10 \mathrm{~s}$, is used. It functions when chang-
ing from normal to faulty state and prevents unavailing pulsation of the ng from normal to faulty state and prevents unavailing pulsation of the
output relay caused by parasitive peaks. Time delay doesn't apply when output relay caused by parasitive peaks. Time delay doesn't apply when
changing from faulty to normal state, but hysteresis $(1-6 \%$ depends on the voltage setting) apply. Thanks to changeover contacts it is possible to get other configurations and functions according to actual requirements
of the application.

Indication LED

Technical parameters	HRN-4		RN-42
Supply			
Supply terminals:	A1-A2		
Voltage range:	AC $110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V (AC 50-60 Hz)		
Burden max:	$5 \mathrm{VA} / 2.5 \mathrm{~W}$ (AC $110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$), 2VA/2.5W (AC/DC 24V)		
Max. dissipated power	$7 \mathrm{~W}(110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V})$,		
(Un+terminals):	6 W (24V)		
Supply voltage tolerance:	$-15 \% ;+10 \%$		
Measuring			
Ranges:*	AC/DC 10-50V AC/DC 32-160V AC/DC 100-500V		
	(AC $50-60 \mathrm{~Hz}$)	(AC $50-60 \mathrm{~Hz}$)	(AC 50-60 Hz)
Terminals:	C-B1	C-B2	C-b3
Input resistance:	$212 \mathrm{k} \Omega$	$676 \mathrm{k} \Omega$	$2.12 \mathrm{M} \Omega$
Max. permanent overload:	100 V	300 V	600 V
Peak overload <1ms:	250 V	700 V	1 kv
Time delay for Umax:	adjustable 0.1-10 s		
Time delay for Umin:	adjustable 0.1-10 s		
Accuracy			
Setting accuracy (mechanical):	5\%		
Repeat accuracy:	<1\%		
Dependance on temperature:	$<0.1 \% /{ }^{\circ} \mathrm{C}$ (\%)		
Tolerance of limit values:	5\%		
Hysteresis	selectable $5 \% / 10 \%$ from range		
(from fault to normal):			
Output			
Number of contacts:	$2 \times$ changeover/ SPDT (AgNi / Silver Alloy)		
Current rating:	16A/AC1		
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{ACl}, 384 \mathrm{~W} / \mathrm{DC}$		
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$		
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$		
Output indication:	yellow Led		
Mechanical Ifif:	3×10^{7}		
Electrical life (AC1):	0.7×10^{5}		
Other information			
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto131} 1^{\circ} \mathrm{F}\right)$		
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$		
Electrical strength:	4 kV (supply - output)		
Operating position:	any		
Mounting:	DIN rail EN 60715		
Protection degree:	IP40 from front panel/ / P20 terminals		
Overvoltage category:	III.		
Pollution degree:	2		
Max. cable size (mm):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1× 1.5 (AWG 12)		
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6\right)$		
Weight:	$249 \mathrm{~g}(110 \mathrm{~V}, 23 \mathrm{~V}, 400 \mathrm{~V})(8.8 \mathrm{oz}), 146 \mathrm{~g}$ (24V) (5.1 oz.)		
Standards:	EN 6025-6, EN 61010-1		

- Relay designed for monitoring DC and AC voltage in three ranges. - The relay controls the size of the voltage in two independent level - The relay contrat
(Umin, Umax).
- Setting the monitored level Umax (in \% of range.)
- Setting the monitored level Umin
(in \% of range - for HRN-42-function WINDOW),
(in \% of the set upper limit- for HRN-41-function HYSTERESIS.
Adjustable function "MEMORY"
- Adjustable delay for eliminating short-term outages and surges for every level independently.
- Galvanically separated power supply from monitoring inputs.
- Output contact 2 x switching $16 \mathrm{~A} / 250 \mathrm{~V}$ AC1 for each monitored voltage level.
- In 3-MODULE design, fixing to DIN rail

Description

Supply volage terminals		Supply volage terminals
	Htrat	Dip su
Supply indication		
	-	ti-time delay for - Umax max
Indication Umax		
Outputindication	0, mo	Button REEET
Indication Umin		12 time delay for
	Nainut	

Description and importance of DIP switches

AC/DC AC	\square	DC	Measured $A C / D C$ voltage
Memory OFF	\square	ON	MEMORY function
Output 1	\square	2	Relay function seting
Hysteresis 5%	\square	10%	Hysteresis setting

Connection

Symbol

Function

the value of the monitored voltage is in the zone between the set upper and lower levels, the status OK occurs - both relays are closed and the yellow LED illuminates. If the value of the monitored voltage is outside the set limits (> Umax or < Umin), an error state occurs.
when moving to an error state $\mathrm{U}>\operatorname{Umax}$, it times the delay t 1 and a red LED $>\mathrm{U}$ simultaneously flashes. After the t 1 time elapses, the red LED $>\mathrm{U}$ illuminates and the relevant relay opens.
hen moving to an error state $U<U$ it it times the delay +2 and a red IED $<U$ simultaneously flashes. After the time $t 2$ elapses, the red $I E D<U$ illuminates dit relay opens.
When moving from the error status to the OK status, the relevant red LED immediately goes out, and the corresponding relay closes.

Function

$15-1.1$ output reala 1 $25-28$ output reay 2

Selection of $2^{\text {nd }}$ the relay function.
In order to monitor 2 levels of voltage, it is po sible to select if output relay yill respond to each
level individually (see the diagram) or both reay level individually (see the diagram) or both relays
will switch in parallel way (see diagram "phase sequence").
Selection via DIP switch Output.

Selection of $2^{\text {nd }}$ relay function:
The function is not implied in the monitoring phas sequence, the relays are switched in parallel way. DIP switch Output is ignored.

Relay is designated to monitor 3-phase circuits. Type HRN-43N controls voltage towards neutral wire, type HRN-43 controls interphase voltage. Relay can monitor voltage in two levels (overvoltage / undervoltage), phase assymetry, sequence and failure. Each faulty state is indicated by individual LED. By DIP switch (Output) it is possible to definee uction of the othe relay- independen and (adju for overvoltage, $1 \times$ for undervoltage) or in parallel. Time delays prevent incorrect conduct and oscillation of output device during short voltage peaks in the main or during gradual voltage decline into normal
Voltage control
Set upper level Umax in range $138-276 \mathrm{~V}$ (or $240-480 \mathrm{~V}$ for HRN-43) and lower level Umin in range $35-99 \%$ Umax. In case any phase passes this range, exceeding fixed hysteresis (which is vadjustable in two values by DIP switch). In case of failure of two or three phases, the relay is deactivated immediately regardless of the set delay $t 2$
Monitors correctness of phase sequence In case of unwanted change output contact breaks. In case of energization of a device with incorrect phase sequence, contact stays opened.
symmetry
ate of assymetry between individual phases is set in a range of $5-20 \%$. In case set asymmetry is exceeded, output relay breaks and LED indicating asymmetry shines. Delays t 1 , t 2 and hysteretic are applicable when returning to normal state. Monitoring asymmetry can be switched off by DIP switch ASYM.

Technical parameters	HRN-54	HRN-54N
Supply and measuring:	L1, L2, L3	L1, L2, L3, N
Supply terminals:	L1, L2, L3	L1, L2, L3, N
Supply / measured voltage:	$3 \times 400 \mathrm{~V} / 50-60 \mathrm{~Hz}$	200V/230V/50-60 Hz
Burden:	max.2va/1 w	
Max. dissipated power	1 w	
(Un+terminals):		
Level Umax:	105-125\% Un	
Level Umin:	$75-95 \%$ Un	
Hysteresis:	2\%	
Max. permanent overload:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload < 1 ms :	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$
Time delay T :	max. 500 ms	
Time delay T :	adiustable 0.1-10 s	
Output		
Number of contacts:	1x changeover / SPDT (AgNi/ / Silver Alloy)	
Current rating:	8A/AC1	
Breaking capacity:	$2000 \mathrm{VA} / \mathrm{AC1}, 240 \mathrm{~W} / \mathrm{DC}$	
Inrush current:	10 A	
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$	
Indication of stat:	red LED	
Mechanical life:	$1 \times 10^{\prime}$	
Electrical life (AC1):	1×10^{5}	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.1588^{\circ} \mathrm{F}\right)$	
Electrical strength:	4 kV (supply - output)	
Operating position:	any	
Mounting:	din rail en 60715	
Protection degre:	IP40 from front panel//P10 terminals	
Overvoltage category:	II.	
Pollution degree:	2	
Max. cable size (mm$)^{2}$:	solid wire max. 2×2.5 or 1×4 / with sleeve max. 1×2.5 or 2×1.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}(3.5 \times 0.7 \times 2.5)$	
Weig	$67 \mathrm{~g}(2.36 \mathrm{oz}$)	$66 \mathrm{~g}(2.33 \mathrm{oz}$)
Standards:	EN 60255-6, EN 61010-1	

Function description

Relay in 3 -phase main monitors size of phase voltage. It is possible to set wo independent voltage levels and thus it is possible to set two independpendently. In normal state when voltage is within set levels, output relay is closed and red LED shines. In case voltage exceeds or falls below the set evels, output relay opens and red LED shines (LED indicates faulty state ashes when timing)
n case supply voltage falls below 60% Un ($\mathrm{U}_{\text {off }}$ fower level) relay immediately opens without delay and faulty state is indicated by red LED. in case timing is in progress and faulty state is indicated, timing is immediately stopped.

It serves to monitor voltage, phase failure and sequence in switch boards, protection of devices in 3 -phase mains.
-It is possible to set upper and lower level of monitoring voltage.

- Adjustable time delay eliminates short voltage peaks and failures in he main.
Supplied from monitored voltage.
- Faulty state is indicated by red LED and by opening of output rela - Output contact 1x changeover / SPDT 8 A / 250 V AC1.
- In case supply voltage falls below 60% Un ($\mathrm{U}_{\text {off }}$ lower level) relay im mediately opens without delay.
- HRN-54: supply from all phases which means that relay is functiona also in case when one phase is faulty.
- HRN-54N: supply $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L}-\mathrm{N}$, means that relay monitors also failur - of neutral wire.
- 1-MODULE, DIN rail mounting.

Description

Function

Connection
Symbol
HRN-54
HRN-54N
HRN-54

16
1

${ }^{16}$
$\stackrel{1}{18}$

Technical parameters	HRN-55	HRN-55N
Monitoring terminals:	L1, L2, L3	L1, L2, L3, N
Supply terminals:	L1, L2, L3	L1, L2, L3, N
Voltage:	$3 \times 400 \mathrm{~V} / 50-60 \mathrm{~Hz}$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Burden:	max. $2 \mathrm{VA} / 1 \mathrm{w}$	
Max. dissipated power	1 w	
(Un+terminals):		
Level Umax:	125% Un	
Level Umin:	75% Un	
Hysteresis:	2\%	
Max. permanent:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload <1ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$
Time delay T :	max. 500 ms	
Time delay T :	adjustable 0.1-10 s	
Output		
Number of contacts:	$1 \times$ changeover / SPDT (AgNi / Silver Alloy)	
Current rating:	8A/AC1	
Breaking capacity:	$2000 \mathrm{VA} / \mathrm{AC1}, 240 \mathrm{~W} / \mathrm{DC}$	
Inrush current:	10A	
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$	
Output indication:	red LED	
Mechanical life:	1×10^{7}	
Electrical life (AC1):	1×10^{5}	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{Cto} 55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$	
Electrical strength:	4 kV (supply - output)	
Operating position:	any	
Mounting:	DIN rail En 60715	
Protection degree:	IP40 from front panel/ /P10 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm):	solid wire max. 2×2.5 or 1×4	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}(3.5 \times 0.7 \times 2.5)$	
Weight:	67 g (2.36 oz.)	$65 \mathrm{~g}(2.29 \mathrm{oz}$)
Standards:	en 60255-6, en 61010-1	

Function description

Relay in 3 -phase main monitors correct phase sequence and failure of any phase. Green LED is permanently ON and indicates presence of power supply voltage. In case of phase failure or exceeding voltage level red LED flashes and relay breaks. When changing to faulty state, time delay applies. Time delay setting is set by a potentiometer on front panel of the device. In case of
incorrect phase sequence red LED shines permanently and relay is open. I case supply voltage falls below 60% Un (OFF Iower level) relay immediately opens with no delay and faulty state is indicated by red LED.
HRN-55 - thanks to supply form all phases, this relay is able to stay operationa also if one phase is out.
HRN-SSN-Supply L1, L2, L3-N, means that relay monitor also failure in neutral
wire.

Relay monitors phase sequence and failure, exceeding of monitored
voltage in 3 phase main HRN-55: supply from all
applicable also if one phase fails of neutral point.
Fixed delay $\mathrm{T1}(500 \mathrm{~ms}$) and adjustable delay $\mathrm{T} 2(0.1-10 \mathrm{~s}$). Faulty state is indicated by LED and output contact of relay is OFF. 1-MODULE, DIN rail mounting - 1 -MODULE, DIN rail mounting.

Function

Connection
Symbol
HRN-55
HRN-55N
HRN-55

${ }^{167}$
${ }^{16} 7$

HRN-55N

Technical parameters	MPS-1
Supply voltage:	AC $3 \times 400 / 230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Supply voltage tolerance:	+20\%, 75%
Power consumption:	max. $1 \mathrm{VA} / 0.5 \mathrm{~W}$
Indication	
LED not illuminated:	0.50 / 45.0 OV
LED illuminated	
- yellow:	50.207V/195.5.45V
- green:	207.264.5V/253.195.5V
- red:	264.5.2 $276 \mathrm{~V} / 276.253 \mathrm{~V}$
Other information	
Design:	1 MODULE
Mounting:	din rail en60715
Operating position:	any
Coverage:	panel IP40, terminals IP10
Overvoltage category:	III.
Contamination level:	2
Max. cable size ($\mathrm{mm}{ }^{2}$):	solid wire max. 2×2.5 or 1×4 / with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Working temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}\right.$ 的 $\left.1311^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}(3.5 \times 0.7 \times 2.5)$
Weight:	$48 \mathrm{~g}(1.70$ oz)
Standards:	EN60947-1, EN60947-5-1

- Used for optical signaling of the voltage level in three phases. - Each phase features LED signaling broken is divided by color into voltage levels:
voltage in tolerance of $\pm 15 \%$ - green
overvoltage - red
undervoltage - yell
- voltage $<50 \mathrm{~V}$ - LED not illuminated.
- Four-wire connection - $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L}, \mathrm{~N}$.
- Monitors phase voltages against neutral wire.
- Not dependent upon order of phases.
- Four-wire connection - L1, L2, L3, N.

In 1-MODULE design. DIN rail mounting

Description of device
Teminial L1

Function

After connecting the supply voltage, the LED illuminates - the color corrender 40 V (phase

Connection

The relay serves to monitor frequency of AC voltage, e.g. in photovoltaic power stations, generators.
Suplied fored requency $50 / 60 / 400 \mathrm{~Hz}$ is selected by a switch
Supplied from monitored voltage.
Two adjustable levels of frequency (Fmin, $F m a x$) in the range of 80 120% Fn.
Adjustable difference level
Adjustable delay level

- Adjustable delay level.
-3-MODULE design, DIN rail mounting.

Rated frequency setting

seetting $=50 \mathrm{~Hz}$

Device description

Functions

After the supply (monitored) voltage is connected, the green LED is on. If the value of the monitored frequency falls within the range between gered (contacts 15-16-18) and the relay OVER is disconnected (contacts 25-26-28).
If the monitored frequency exceeds the set level Fmax, the relay OVER is riggered after the set delay timing elapses and the red LED OVER goes on. The red LED flashes during the timing.
If the monitored frequency drops below fmax - differe
activated without delay and the red LED OVER goes off.
If the monitored frequency drops below the set level F min, the relay UNDER is disconnected after the set delay timing elapses and the red LED UNDER goes on. The red LED flashes during the timing. If the monitored requency exceeeds the level Fmin + the difference
without delay and the red LED UNDER goes off.
If the monitored voltage is lower than the opening level Uopen both the relays are disconnected and both the red LED (UNDER and OVER) start flashing slowly - indicating insufficient supply voltage.
innovation

Output
Number of contacts:
Current rating:
Breaking capacity: Inrush current: Switching voltage:
Output indication: Output indication: Electrical life (AC1): Other information Storage temperature: Electrical strength: Operating position: Mounting: Protection degree: Overvoltage category: Pollution degree: Max. cable size $\left(m m^{2}\right)$:

Standards:

00000

Technical parameters	COS-2
Supply	
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V}, \mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V (AC / 50-60 Hz)
Burden max:	$2.5 \mathrm{~W} / 5 \mathrm{VA}(\mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$), $1.4 \mathrm{~W} / 2 \mathrm{VA}\left(\mathrm{AC} / \mathrm{DC}_{2} 24 \mathrm{~V}\right)$
Max. dissipated power	
(Un+terminals:	4 w
Operating range:	$-15 \% ;+10 \%$
Measuring	
Voltage set:	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Terminals:	L1, L2, L3, B1
Upper level cos-¢:	adjustable 0.1-0.99
Bottom level cos-q:	adjustable 0.1-0.99
Max. permanent voltage:	(input L1, L2, L3) AC $3 \times 460 \mathrm{~V}$
Curentrange:	0.1-16 A
Current overloading:	20 A (<3 sec.)
Hysteresis:	adjustable 5% or 10%
Time delay ti:	adjustable 0.1-10 s
Time delay t :	adjustable 0.1-10 s
Accuracy	
Accuracy setting (mechanical):	5\%
Accuracy of repetition:	<1\%
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{C}(\mathrm{FF})$
Limit values tolerance:	5\%

-

COS-2 AC/DC 24 V (AC/ $150-60 \mathrm{~Hz})$ VAA AC $110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}$, AC 400 4 W
$-15 \% ;+10 \%$ $3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 50-60 \mathrm{~Hz}$ adjustable $0.1-0.99$ adjustable $0.1-0.99$ $0.1-16 \mathrm{~A}$ 20 A (<3 sec.) adjustable 5% or 10% adjustable $0.11-10$ s
$<0.1 \% /{ }^{\circ} \mathrm{C}$ 5\%

$2 \times$ changeover/ SPDT (AgNi / Silver Alloy)
16A/AC1
$4000 \mathrm{VA} / \mathrm{ACl}, 384 \mathrm{~W} / \mathrm{DC}$
$20 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
yellow Led
3×10^{7}
0.7×10^{5}
$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$
4 kV (supply -output)
any
DIN rail En 60715
\|P40 from front panel/ /P20 terminals
III.
2
max. 1×2.5, max. 2×1.5 / with sleeve max. 1×1.5 (AWG 12)
$90 \times 52 \times 65 \mathrm{~mm}(3.5 \times 2 \times 2.6)$
$243 \mathrm{~g} / 8.60 \mathrm{oz}(230 \mathrm{~V}, 110 \mathrm{~V}, 400 \mathrm{~V}) ; 141 \mathrm{~g} / 5$ oz (24V)
EN 60255-6, EN 61010-1

Relay monitors phase shift between current and voltage in 3 -phase - 1 -phase networks - evaluates $\operatorname{COS} \varphi$ (replacement COS-1)

Relay is desiggned to monitor overload / relieve the motors

- Relay is designed for $3 \times 400 / 230 \mathrm{~V}$ circuits
- Galvanically isolated power supply AC 230V, AC 110V, AC 400V
or AC / DC 24 V or AC / DC 24 V
- Adjustable upper and lower level $\cos \varphi$
- Possibility to extend the current range using a current transformer - Adjustable MEMORY function
- Two output relays (for each level independent)
- Adjustable delay eliminating engine start-up
- Output contact $2 x$ changeover $16 \mathrm{~A} / 250 \mathrm{~V}$ AC1
- 3 -MODULE design, mounting onto DIN rail.

Description

Description and importance of DIP switches

RESET OFF	\square	ON	Enable resest by buton
Memory OFF	\square	ON	Memory eror state
Output 1	\square	Relay function seting	
Hysteresis 5%	\square	10%	Hysteresis seting

Connection
Connection with
current transformer

Symbol

Function
Status after switching on power, two relay mode

Memory on, two relay mode decrease (loss) of current

After powering on, the device sets the delay time t 1 and yellow LED flashes. Both relays are switched on. The delay serves to eliminate a faulty state when starting the motor. After the time delay t 1 begins monitoring $\operatorname{COS} \varphi$ only.
If the $\operatorname{COS} \varphi$ is in the band between the upper and lower limits set, both relays are switched on and the yellow LED is on.
If the $\operatorname{COS} \varphi$ is outside the set limits ($>\operatorname{COS} \varphi$ max or $<\operatorname{COS} \varphi$ min), an error condition occurs - the time $t 2$ is delayed while the red LED corresponding to the COS φ blinks at the same time. After the time delay $\mathbf{t 2}$ red LED lights and the corresponding relay remains off.
When the $\operatorname{COS} \varphi$ returns to set limits, the time $t 1$ is delayed and the yellow LED flashes at the same time as the corresponding red LED. After the time delay stops blinking yellow LED, the corresponding red LED turns off and the relay switches on.

At low wattage (< $100 \mathrm{mA)}$) or with a power failure, an error is reported by the simultaneous blinking of both red LEDs. After resuming the voltage or the curren
being watched, the relay returns to the normal state where the $\operatorname{COS} \varphi$ value is monitored.
When the memory is turned off (DIP switch 2 OFF) and the allowable reset (DIP switch 1 ON), the pressing state is reached after the power is turned on, i.e. flashing yellow LED, both relays are switched on, with time delay t .
When the memory (DIP switch 2 ON) is in an error state (high or low value for $\cos \varphi$) it should be reset (by pressing the RESET button).

Current transformer is a part of the product. Inside this transformer
there is a wire which senses the volume of flowing current This construction reduces
with com range up to 20 Amps, and galvanically separates monitoreded circuit
For heating bars in sliding rails, heating cables, indication of current
For heating bars in sliding rails, heating cables, indication of current Universal supply AC $24-240 \mathrm{~V}$ and DC 24 V .

- Supply is galvanically separated from measuring current.
- Current exceeding - current flowing through monitored wire must not exceed 100 A .
Jutput contact: $1 \times$ changeover / SPDT 8 A.
Clamp terminals.
1-phase, 1-MODULE, DIN rail mounting
Description

Function

Monitoring relay PRI-32 serves to monitor current level in single phase AC circuits. Due to its fluent adjustment of release current, it is predestined for applications with necessity of current flow indication, and can be used as precedence relay. Output relay is off in normal state. In case
the set current level is exceeded, it switches. Multivoltage supply is an advantage.

Connection

Symbol

Monitoring relay PRI-51 serves to monitor current level in one-phase AC Monitoring relay PRI-TT serves to monitor current level in one-phase AC
circuits. Gradual setting of actuating current of monitoring relay enables many different applications. Output relay is in normal state opened. Af-
ter the set current level is reached, relay closes after the set delay 0.5 ter the set current level is reached, relay closes after the set delay (0.5 -
105). When returning from faulty to normal state there is a hystersis (5%). 105). When returning from faulty to normal state there is a hystersis 5%.
Multi-voltage of this relay is an advantage. It is possible to monitor load which doesn't have the same supply as monitoring relay PR1-51. Range of PRI-51 can be increased by an external current transformer.

Connection

116

15
Symbol

Example
Always specify all reference name of current relay according to require range, for example PR1-51/5,

Function

If the value of the monitored current is in the zone between the set upper and lower levels, the status OK occurs - both relays are closed and the yellow LED |luminates. If the value of the monitored current is outside the set limits $(>\mid \max$ or $<1 \mathrm{~min})$, an error s state occurs.
when moving to an error state $\mathrm{I}>\mid$ max, it times the delay t 1 and a red LED $>\mid$ simultaneously flashes. After the t 1 time elapses, the red LED $>\mathrm{I}$ illuminates and the relevant relay opens.
when moving to an error state $\mathrm{I}<I$ min, it times the delay t 2 and a red LED <1 simultaneously flashes. After the time t 2 elapses, the red LED $<\mathrm{l}$ illuminates and the relevant relay opens.
hen moving from the error status to the OK status, the relevant red LED immediately goes out, and the corresponding relay closes

- relay is designated for
distant device diagnostic (short circuit, take-off increasing) preferred (priority) relay - two appliances (boiler and floor heating) operating on one phase, but never run together - prevention against current overload and circuit breaker tripping. Enables to save you current tranzit indicator - informs about heating activation, ceram hob, ventilator...
changing over of appliances according to inverter's (converter) out pplications
part of device is current thductor passes through the body of device in threaded conductor
possible to use tor ser possible to use also
current transformer
slight setting (by potentiometer) of tripping current - range AC0.5.25 - slight setting (by potentiometer) of delay - dijustable in rane 0.5. 10 A - supply voltage AC 230 V
- output contact 1x switching 8 A (AC1)
$\cdot 1$-phase version, 1 -MODULE, mounting onto DIN rail, saddle terminals

Description

Functions

Monitoring relay PRI- 52 serves for monitoring of current level in 1 -phase AC circuits. Slight setting of release current level designates this relay for
many various applications. Output relay is in oremal status switched off many various applications. Output relay is in normal status switched off
When set current level is overrun, relay get closed after preset delay. By return from error to normal status is used hysteresis.
PR1-52 range is possible to increase with external current transformer. Adventage of PRR-52 is that the hole for threaded conductor is located
under the level of covering in the switchboard - thanks that, threaded under the level of covering in the switchboard - thanks that, threaded conductor is not accessible for unwanted manipulation.

Symbol

Technical parameters PRI-53/1 PRI-53/5
Supplyterminals:
家

Supply terminals:	A1, A2	
Current monitoring terminals		
$1 s t$ phase:	11,12	
2nd phase:	13,14	
3rd phase:	15,16	
Supply voltage:	24-240V AC/DC	
Tolerance of voltage range:	$\pm 10 \%$	
Operating AC frequency:	$45-65 \mathrm{~Hz}$	
Burden: (max):	$3 \mathrm{VA} / 1.2 \mathrm{~W}$	
Max. dissipated power	2.5 w	
(Un+terminals):		
Rated current I :	AC 1 A	AC5A
Current level-1:	adjustable $40-120 \%$ In	
Overload capacity		
- continuous:	2 A	10 A
-max. 3s:	20 A	50 A

Difference:
Delay (until failure):
Output relay-contact: AC contact capacity:
AC contact capacaty:
Mechanical life:
Mechanical life:
Operating temperature:
Storing temperature:
Electrical strength
(power supply- relay contact):
Overvoltage category
Pollution level:
Protection degree:
Max. cable size $\left(m^{2}\right)$
Dimensions:
Weight:
Standards:
fix 1% in
djustable $0.5-10$
$2 \times$ changeover / SPDT (AgNi) gilded
changeover / SPDT (AgNi) gilded
$250 \mathrm{~V} / 8 \mathrm{~A}$, max. 2000 VA
$30 \mathrm{~V} / 8 \mathrm{~A}$
3×10^{6} at rated load
$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158^{\circ} \mathrm{F}\right)$
$4 \mathrm{kV} / 1 \mathrm{~min}$
III.
|P40 from font panel//P200 terminal
max. $2 \times 1.5 / 1 \times 2.5$ (AWG 12) $90 \times 105 \times 64 \mathrm{~mm}\left(3.5 \times 4.1 \times 2.5^{5}\right)$ $213 \mathrm{~g}(7.5$ oz)
$60255-27$. EN $61000-62.2$
Standards:
EN $60255-6$, eN $60255-27$, EN $61000-6-2$, , 6 61000-6-4

Connection

Example of connection PRI - 53 with a current
conversion transformer conversion transformer
for increasing the current range.

It is intended for monitoring the current in three-phase devices (e.g. cranes, motors, etc.).
$24-24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ power supply galvanically separated from the circuit
of the monitored current. of the monitored current.
Adjustable current level in \% of In .

- Fixed difference level.

Adjustable delay level (when exceeding the preset limit)

- UNDER - monito
preset value (1).
- OVER-exceeding the preset value (1).

2 types depending on the strength of rated current $\ln (1 \mathrm{~A}, 5 \mathrm{~A})$ 6-MODULE, DIN rail mounting.
Option of connecting via the current transformers to increase the value of the monitored current by up to 600 A .
Description

Functions

After the supply voltage is connected the green LED is on.
UNDER function:
If the strength of the monitored current in all phases exceeds the preset evel I, the relay is triggered and the red LED is off. If the strength of the monitored current drops in any phase below the level II, the relay is disconnected after the preset delay timing elapses and the red LED goes on.
The red LED flashes during the delay
d trenth of the monit deday
ence, the relay is triggered without delay and the red LED goes off. OVER function:
The strength of the monitored current is lower in all phases than the preset level I, the relay is disconnected and the red LED is off.
If the strength of the monitored current exceeds in any phase the level
, the relay is triggered after the preset delay timing elapses and the red LED goes on. The red LED flashes during the delay.
If the strength of the monitored current again drops below the level I- dif-

Technical parameters	HRH-5
Functions:	2
Supply terminals:	A1-A2
Voltage range:	24.240 VAC / DC (AC $50-60 \mathrm{~Hz}$)
Input:	max. $2 \mathrm{VA} / 1.5 \mathrm{~W}$
Max. dissipated power	
(Un+terminals):	2 w
Toleration of voltage range:	-15 \% ; 10%
Measuring circuit	
Sensitivity (input resistance):	adjustable in range $5 \mathrm{k} \Omega$ - $100 \mathrm{k} \Omega$
Voltage n electrodes:	max. AC 3.5 V
Current in probes:	AC $<0.1 \mathrm{~mA}$
Time response:	max. 400 ms
Max. capacity of probe cable:	800 nF (sensitivity 5 k) , 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay (t):	adjustable, 0.5-10 sec
Time delay afers switching on (t):	1.5 sec
Accuracy	
Accuracy in setting (mech.):	$\pm 5 \%$
Output	
Number of contacts:	$1 \times$ changeover / SPDT (AgNi / Silver Alloy)
Current rating:	8A/AC1
Switching voltage:	$2000 \mathrm{VA} / \mathrm{ACL}, 240 \mathrm{~W} / \mathrm{DC}$
Switched voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Mechanical life (AC1):	$1 \times 10^{\prime}$
Electrical life:	1×10^{5}
Other information	
Operational temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.1588^{\circ} \mathrm{F}\right)$
Electrical strenght:	2.5 kV (supply - sensors)
Operational position:	any
Mounting:	din rail En 60715
Protection degree:	IP40 from font panel//IP10 terminals
Overvitage category:	1.
Pollution degre:	2
Profile of connecting wires	max. 2×2.5, max. $1 \times 4 /$
$(\mathrm{mm})^{2}$:	with sleeve max. 1×2.5, max. 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime} \times 2.5{ }^{\text {a }}\right.$)
Weight:	73 g (2.6 oz.)
Standards:	En 60255-6, en 61010-1
Recommended measuring probes:	see pg. 100
Symbol	

Relay is designed for monitoring levels in wells, basins, reservoirs

- In one device you can choose the following configurations:
- one-level switch of conductive liquids (by connecting H and D)
two-level switch of conductive liquids.
One-state device monitors one level, two-state device monitors two
,
Choice of function PUMP UP, PUMP DOWN.
- Adjustable time delay on the output ($0.5-10 \mathrm{~s}$).
- Measuring frequency 10 Hz prevents polarization of liquid and raising
oxidation of measuring probes. oxidation of measuring probes.
Galvanically separated supply voltage UNI $24 . .240 \mathrm{~V}$ AC/DC.
- 1-MODULE, mounting onto DIN rail.

Device description

output contacs
Function

Relay is designated for monitoring of levels of conductive liquids with possibility of functions: PUMP UP or PUMP DOWN. To prevent polarization and iquid electrolysis of liguid, and undesirable oxidation of measuring probes, ternating current is used. For measuring use three measuring probes:

- upper level, D- lower level, C- common probe. In case you use a tank H- upper level, D- Iower level, C - common probe. In case you use a tank
made of a conductive material, you can use it as probe C. In case you require monitoring of one level only, it is neccessary to oconect inputs H and D and
connect them to one probe- in this case sensitivity is lowered by hal $\{25$ connect them to one probe - in this casse sensitivity is lowered by half (2.5.).
$50 \mathrm{k} \Omega$. Probe C can be connected with a protective wire of suply system $50 \mathrm{k})$. Probe C can be connected with a protective wire of supply system
$($ PE). To prevent undesirable switching out output contacts by various influences (sediment on probes, humidity...) it is possible to set sensitivity of the device according to conductivity of monitored liguid (corresponding to "re-
sistance" of liquid) range 5 up to $100 \mathrm{k} \Omega$. To reduce infuences of undesirable sistance" of liquid) range 5 up to $100 \mathrm{k} \Omega$. To reduce infuences of undesirable switching of output contacts by liquid gorgle in tanks, it is possible to set
elay of output reaction $0.5-10$ s.

Connection

Monioring of one leve

Technical parameters HRH-4

In an easy way it automates operations of pumps depending on leve. Control of level in wells, tanks, reservoirs...
It is delivered as a connected set - easy installation.

- Possibility to monitor level of any type of conductive liquid.
- It serves for an automatic operation in 1 -phased and 3 -phased pumps.

Set of level switch HRH-5 and a contactor VS425.

- Function choice - pumping up or down.

Unit requires incoming over-curren
There is a possibility of st types of
not a part of this set, it is possible to deliver) various design (they are Unit is placed in a plastic box with dimensions $160 \times 135 \times 83 \mathrm{~mm}$ (6.3 x 5.3×3.3^{3}).

Function
Function PUMP UP

Function PUMP DOWN

Connection

Technical parameters	HRH-6/DC	HRH-6/AC
Function:	2	
Voltage range:	12.24VDC	$230 \mathrm{VAC} / 50-60 \mathrm{~Hz}$
Burden:	max. 1.8 W	max. 3.8 VA
Max. dissipated power	3 W	
(Un+terminals:		
Supply tolerance:	$\pm 20 \%$	$-20 \% ;+10 \%$
Measuring circuit		
Sensitivity adiustable in the	min. $10 \mathrm{k} \Omega$	
range*:	max. $200 \mathrm{k} \Omega$	
Voltage on probes:	max. 3 V AC	
Probe cable maximum capacity:	500 nF (for min. sensitivity), 50 nF (for maximum sensitivity)	
Time delay:	adjustable $1 . .10$ s	
Output	$6 \times$ LED (1x red, $1 \times$ yellow, $4 \times$ green)	
Number of contacts:	1x NO-SPST (AgNi / Silver Alloy)	
Current rating:	$10 \mathrm{~A} / \mathrm{AC1}$	
Switching voltage:	$2500 \mathrm{VA} / \mathrm{AC1}, 200 \mathrm{~W} / \mathrm{DC}$	
Peak current:	16A/<35	
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$	
Mechanical life (AC1):	3×10^{7}	
Electrical life:	0.7×10^{5}	
Other information		

Other information		
Operating temperatur:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	
Storage temperatur:		
El. strength (supply - probes):	\times	3.75 kV
Operating position:	any	
Protection degree:	1P65	
Overvoltage category:	\times	11.
Polution degree:	2	
Dimensions:	$110 \times 130 \times 72 \mathrm{~mm}\left(4.3^{\prime \prime} \times 5.1^{\prime \prime} \times 2.8\right)$	
Weight:	288 g (10.2 oz)	385 g (13.6 oz.)
Standards:	EN 60255-6, EN 61010-1	
Recommended measuring probe:	see pg. 100	

* Note: sensitivity is higher at both ends of a range of values.

Function 1 monitors minimal and maximal level depth, for example in fire engine cars, tanks etc.

- Function 2 monitors level depth in water collectors, basins, pools etc. - Selection of particular function is made by jumper on the front panel. - Level depth is indicated on the panel of device by LED.
- Device monitors 5 levels by using six probes (one probe is common) - Common probe can be replaced by a metal (conductive) tank.
- Level indicationby six LED's on the front panel of the device.

It is possible to connect another indication module (e.g. in fire-engine
cabin).

It is possible to connect another indication module (e.g.
cabin).
Adjustable sensitivity according to liquid conductvity.

- Adjustable sensitivity according to liquid conductvity.
- Adjustable time delay - elimination of level movement, e.g. while tank is being filled up.
Measuring frequency 10 Hz to prevent polarization of liquid.
- Supply voltage $12 . .24 \mathrm{VDC}$ (to be used in fire-engines) or galvanically - Supply voltage 12.24 VDC (to be used in fire-engines) or galvanically
separated 230 VAC for general use.
- Contact relay 10 A for signalization of full / empty tank (according to
a chosen function).
- Choice of functions PUMP UP / OFF / PUMP DOWN by a switch located on the front panel of the device
Protection degree IP65.

Description
HRH-6/DC Basic unit
${ }_{\text {Evel L5 indication }}^{\text {LED }}$ $\xrightarrow[\text { Evel L4 indication }]{\text { LeD }}$

HRH-6/S Auxiliary signalling
Cont-6/S Auxiliary signaling

Setup elements (inside basic unit)

HRH-6 block connecting

* In case of HRH-6/DC, incoming supply is connected on terminals +Un and - Un.

Functions

This device monitors level of a conuctive liquid in a tank by using six single probes or one 6 -fold probe. In case you use a tank made of a conductive materia it is possible to use it as a common probe C.
This common probe is connected to a pole of supply (for fire-engines it means its body) in case of supply voltage 12.24 VDC
In case of supply voltage 230 V AC , the circuits are galvanically separated from the main.
The device is controlled by a three-position switch PUMP UP / OFF / PUMP DOWN. After switching into a position PUMP UP or PUMP DOWN, red LED1 shines and then also LED2.. LED6 according to liquid level. Output relay has 2 selectable functions.
Funtion setting is done by a jumper on basic board of HRH-6,
Function 1: (for use in fire-engines) - jumper is applied. In case of function PUMP UP and level reaching $L 5$, the relay controlling e.g. acustic signalization permanently closes and indicated ful tank. In case of PUMP DOWN function and level dropunder level $L 3$, relay priodically switches and under $L 2$ it switche permanently (indicates almost empty tank).
Function 2: (for keeping liquid level) - jumper is not applied. In case of PUMP UP, sensor is switched until liquid reaches level L5. Then relay opens and switches again in case the lliguid level falls under level L1. In case of PUMP DOWN - relay is switched untill liquid falls under level L1. Then relay opens and switches again
on level L5. on level L5.
To eliminate LED flashing while level gurgle it is possible to delay reaction of probes (set delay $1 . .10 \mathrm{~s}$). According to conductivity of liquid it is possible to set sensitivity of probes (corresponding to "resistance" of liquid).

Function

Function PUMP-UP

Function PUMP-DOwN
 An $A C$ current is used for measuring to prevent polarization and electrolysis of fluid and unwanted oxidation of measuring probes. Three probes are used
for measuring: H - upper level, D - lower level and C - common probe. If using a tank made from conductive material, i is possible to use the tank itself as probe C.
it is necessary to monitor only one level, there are two connection options:
2. Inputs H and D are connected to a single probe - in this case the sensitivity is decreased to half (2.5 . 50 kg).

It is also possible to connected and the probe is connected to input D - in this case, the original sensitivity remains $(5 . .100 \mathrm{k} \Omega)$

Example of connecting the level switch to a 1 -phase pump at a well, borehole

wiring for supply 230 VAC (for monitoring two levels)

Monitoring TWO LEVELS of the FLUID LEVEL minimum / maximum

DRAINING function - (PUMP DOWN)
Description of draining function
This function is used in a well or borehole where the difference between pump out and protect against running dry.
After detecting the maximum level, the set reaction delay begins running. After this period, the output contact immediately switches on the pump until the minimum level is reached, when the set delay begins running once again. The pump then switches off.

Example of connecting the level switch to a 3 -phase pump at the well, borehole
wiring for supply 230 VAC (for monitoring two levels)

Monitoring TWO LEVELS minimum / maximum

- REPLENISHING function - (PUMP UP)
- REPLENISHING function - (PUMP UP)

Description of replenishing function
This function is used when you need to regularly pump in water to a well or borehole, which is leaking,
After detecting the minimum
After this period, the output contact immediately switches on the pump After this period, the output contact immediately switches on the pump
or the period until it reaches the maximum level, where the set delay begins running once again. The pump then switches off. (PUMP DOWN)
Description of draining function:
After ctecting thed to protect against overflows and flooding of areas.
After detecting the maximum level, the set reaction delay begins
running. After this period, the output contact imediately switches running. After this period, the output contact immediately switches on
the 3 -phase pump unti the minimum level is reached, when the set delay begins running once again. The pump then switches off.

InNOVATION	\pm
Technical parameters	HRH-8
Function:	8
Supply terminals:	A1-A2
Voltage range:	AC $110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$ galvanicaly separated (AC 50-60Hz)
Burden max:	$2.5 \mathrm{~W} / 5 \mathrm{VA}(\mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V})$, $1.4 \mathrm{~W} / 2 \mathrm{VA}$ (AC/DC 24 V)
Max. dissipated power	$4 \mathrm{~W}(110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V})$;
(Un + terminals:	3 W (24V)
Supply voltage tolerance:	$-15 \% ;+10 \%$
Measuring circuit	
Hysteresis (input - opening):	in an adjustable range $5 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
Voltage on electrode:	max. AC 3.5 V
Current in probes:	$\mathrm{AC}<1 \mathrm{~mA}$
Time reaction:	max. 400 ms
Max. cable capacity:	800 nF (sensitivity $5 \mathrm{~K} \Omega$), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay :	adjustable 0.5-10 sec
Accuracy	
Setting accuracy (mech.):	$\pm 5 \%$
Output	
Number of contacts:	2xchangeover / SPDT (AgNi / Silver Alloy)
Curentrating:	16A/AC1
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	din rail en 60715
Protection degre:	IP40 from front panel//P20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm²):	Solid wie max. 112.5 or 2×1.5 / with caver max. 1×1.5 (AWG 12)
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6\right)$
Weight	$247 \mathrm{~g} / 8.7 \mathrm{oz}(110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V} ; 145 \mathrm{~g} / 5.10 \mathrm{oz}(24 \mathrm{~V})$
Standards:	EN 6025-6, EN 61010-1
Measuring sensors:	see pg. 100
Symbol	
HRH-8(110V, 230V, 400V)	HRH-8/24V

- Relay is designed to control the level of conductive liquids in wells, Galvan, pools, tankers, reservoirs... (replacement HRH-1)
Witrically isolated supply and guard circuits
$-2 \times$ one-level 2x one-level monitoring (in separate tanks
Pumping from one tank to another
DIP switch selection on the front panel (8 functions)
Adjustabl probe sensitivity (for each probe seions)
- Adiustable reay switching delay (for each probe sely
- 10 Hz watch frequency prevents polarization of the liquid and
- 10 Hz watch frequency prevents polarization of the liquid and increases
- $2 \times$ output relay (with changeover contact 16 A
-3-MODULE design, mounting onto DIN rail.

Description

HRH-8/24V

Description and importance of DIP switches

Connection
HRH-8(110V, 230V, 400V)

Measuring probes
There can be any measuring probe (any conductive contact, it is recommended to use brass or stainless steel),
When using a shielded wire, the shielding is cont it is recommended.

Functions

PUMP UP, OFF DELAY (Function 5)

PUMP DOWN, OFF DELAY (Function 6)

WELL - TANK, OFF DELAY (Function 7)

RESERVOIRS - TANK, OFF DELAY (Function 8)

The relay is designed to monitor the level of conductive liquids with a choice of 8 functions:

1) -2 separate tanks (each with 1 probe) - both PUMP UP (filling)
2) - 2 separate tanks (each with 1 probe) - both PUMP DOWN (emptying)
3) - 2 separate tanks (each with 1 probe) - H PUMP DOWN probe, D PUMP
UP probe UP probe
4) -2 separate tanks (each with 1 probe) - H PUMP UP probe, probe D PUMP DOWN
) - both probes in one tank - PUMP UP - maintain level between probes H and D (as HRH -5), relay 1 switches on the pump, relay 2 alarm (level is not between probes H and D)

- Both probes in one tank- PUMP DOWN - maintaining the level between probes H and D (as $\mathrm{HR} \mathrm{H}-5$), relay 1 switches on the pump, relay 2 alarm (the - eumping is from between probes H and D) , in the , H in the tank. The pump only runs if the probe D is flooded (enough water in the tank. The pump only runs if the probe D is flooded (enough water in the
well) and the tank is not full (probe H). The alarm reports a lack of water in the well (probe D is not flooded).

8) - Pumping from the sump to the tank - probe D in the sump, probe H
in the tank. The pump only runs if the probe D is flooded (full tank) and the tank is not full (probe H H) The alarm reports the status of full tank and sump (both probes are flooded).

PUMP DOWN, OFF DELAY (Function 2,3,4)

PUMP UP, ON DELAY (Function 5)

PUMP DOWN, ON DELAY (Function 6)

WELL - TANK, ON DELAY (Function 7)

RESERVOIRS - TANK, ON DELAY (Function 8)

LED indication:
The red LED lights up - the corresponding relay is switched on
The yellow LED indicates probe failure - Functions 5,6 probe H is flooded and probe D is not. At the same time both red LEDs flash.
To prevent polarization and electrolysis of the liquid and undesirable oxidation of the monitoring probes, an AC current of 10 Hz is used for monitoring the low frequency has a positive effect on suppression of interference by $50(60) \mathrm{Hz}$. Three probes are used to monitor the level: H - upper level, D lower Ievel and C - common probe. In the case of the use of a conductive ma-
terial tank, it is possible to use the tank itself as a C probe. Probe C can also be terial tank, it is possible to use the tank itself as a C probe. Probe C can also be
connected to the protective conductor of the power supply system (PE). To prevent undesired switcthing by various influences (soiling of dips, moisture ...). the sensitivity of the device can be set according to the conductivity of the liquid being monitored (corresponding to the "resistance" of the liquid) in
the range of 5 to $100 \mathrm{k} \Omega$. To limit the effect of undesired switching of output the rance of 5 to 100 k . To limit the eftect of undesired switching of output
contacts by raising the liquid level in the tank, it is possible to set the output response delay $0.5-10$ s.

HRH-x | Level sets

- Level sets are used to monitor levels in wells, reservoirs, tanks. - Advantage is the possibility of setting PUMP UP and PUMP DOWN and
also delayed switching (e.g. in case of level fluctuations). also delayed switching (e.g. in case of level fluctuations).
The possibility of connection to 1 or 3 -phase pump (depending on the type of set).
Easy to install without complicated wiring - ready for installation. There are Level sets placed in switchboard with IP65 protection HRH-VS: level switch HRH-5 with installation contactor VS425-40 (25A contact) -HRH-MS-1A: level switch $H R H-5$ with motor starter MS18 $0.63-1 \mathrm{~A}$ HRH-MS-1.6A: level Iwitch HRH-5 with motor starter MS181-1.6A
-HRH-MS-VS-2.5A: level switch HRH-5 with installation contactor VS425-40 (25A HRH-MS-VS-2.5A: level switch HRH-5 with instalation contactor V S425-40 (25
contact) and with motor starter MS18 $1.6-2.5 \mathrm{~A}$ -HRH-MS-VS-4A: level switch HRH-5 with installation contactor VS425-40 (25A
contact) and with motor starter MS18 $2.5-4 \mathrm{~A}$ contact) and with motor starter M518. $2.5-4 \mathrm{~A}$ HRH-MS-VS-6.3A: level switch HRH-5 with installation contactor VS425-40 (25
contact) and with motor starter MS18 84.6 .3 A

Technical parameters	HRH-VS	HRH-MS-1A	HRH-MS-1.6A	HRH-MS-VS-2.5A	HRH-MS-VS-4A	HRH-MS-VS-6.3A
Function:	2					
Voltage range:	$230 / 400 \mathrm{VAC} 50-60 \mathrm{~Hz}$					
Input (max):	$4.6 \mathrm{VA} / 1.5 \mathrm{~W}$	$2 \mathrm{VA} / 1.5 \mathrm{~W}$	$2 \mathrm{VA} / 1.5 \mathrm{~W}$	$4.6 \mathrm{VA} / 2 \mathrm{~W}$	$4.6 \mathrm{VA} / 2 \mathrm{~W}$	$4.6 \mathrm{VA} / 2 \mathrm{~W}$
Toleration of voltage range:	-15\%; 10%					
Measuring circuit						
Sensitivity (input impedance):	adjustable in range $5 \mathrm{k} \Omega$ - $100 \mathrm{k} \Omega$					
Voltage on the electrodes:	max. AC3.5 $\mathrm{V}^{\text {d }}$					
Current in probes:	AC $<0.1 \mathrm{~mA}$					
Time response:	max. 400 ms					
Max. capacity of probe cable:	800 nF (sensitivity $5 \mathrm{k} \Omega$), 100 nF ((sensitivity $100 \mathrm{k} \Omega$)					
Time delay (t):	adjustable, 0.5-10 sec					
Time delay after switching on (t):	1.5 sec					
Accuracy:						
Setting accuracy (mech.):	$\pm 5 \%$					
Output						
Number of contacts:	4	1	1	4	4	4
Rated thermal current:	25 A	8 A	8 A	25 A	25 A	25 A
Load on AC3:	4 kw	1 A	1.6 A	2.5 A	4 A	6.3 A
Switching voltage:	$230 \mathrm{~V} / 400 \mathrm{~V}$	230 V	230 V	400 Vac	400 Vac	400 VaC
Electric life (A3):	0.5×10^{6}	1×10^{5}	0.5×10^{6}	0.5×10^{6}	0.5×10^{6}	0.5×10^{6}
Current setting range MS18:	-	0.63-1 A	1-1.6A	1.6-2.5 A	$2.5-4 \mathrm{~A}$	4-6.3 A
Other information						
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$					
Storage temperature:	$-25^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$					
Electrical strength:	3.75 kV (supply - probe)					
Operating position:	any					
Protection degre:	IP65 set					
Pollution degree:	2					
Dimension:	$201 \times 128 \times 120 \mathrm{~mm}\left(7.9 \times 5 \times 4.7^{\prime \prime}\right)$			$201 \times 202 \times 120 \mathrm{~mm}\left(7.9 \times 7.9 \times 4.7{ }^{\text {¹ }}\right.$)		
Weight:	$862 \mathrm{~g}(30.40 \mathrm{z})$	872 g (30.70\%.)	872 g (30.702.)	1358 g (47.9 oz.)	1358 g (47.9 oz.)	1358 g (47.9 oz.)
Relate standards:	EN 60255-6, EN 61010-1					

Functions

PUMP DOWN function (DOWN) used for protection against Idle Running or against overflow and flooding areas.
Detecting the maximum level results in activation of adjusted delayed response. After that output contact immediately turns on single or 3 -phase pump until reaches the minimum level. Then the pump turns off. In case that a reservoir is made of a conductive material e.g. metal tanks, there can be a difference in connection of H RH- 5 leve sets - it is not neces
inside a common probe , ,C" and connect with SHR-2 probe, but thanks to conductivity of vessel we can connect probe C to the reservoir body.
The length of wire cable (between the level switch and probe) can be up to 50 m . We don't recommend placing near the power lines, because the sensitivity of equipment can be affected and thus the entire functionality.

ecommended accessories:

3 wire cable D03VV-F $3 \times 0,75 / 3,2$
-1 wire cable Do5V-K $0,75 / 3,2$
-SHR-2 probe - probe covered by PVC (protected) - used in moderately polluted waters, drilling, wells. Assembly - hanging in the well.

Connection

Level set HRH-MS-1A (HRH-MS-1.6A)

Level set HRH-MS-VS-2.5A (HRH-MS-VS-4A, HRH-MS-VS-6.3A)

SHR-1-M, SHR-1-N, SHR-2, SHR-3 | Level sensors

[^1]SHR-1-M: brass sensor part of device. the sensor. - Weight: $9.7 \mathrm{~g}(0.3$ oz.).

Level probe SHR-2

Installation:

SHR-2 in open state

SHR-1-N: stainless steel sensor

- Sensor to control flo oding
- Sensor to control flooding.
- Electrode with diametr $4 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$ is placed in plastic cover
- Panel or to holder mounting.
- Conductor is connected to terminal board, shrink bushing for feeder place insulation is a
- Max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG10).
- Installation: after connecting a wire to the sensor, run the shrink bushing over the wire onto
- Heat the sensor and by shrinking the connection of sensor and wire will be hermetical.

- Total sensor lenght: $65.5 \mathrm{~mm}\left(2.58{ }^{\prime \prime}\right)$.
- Detection sensor is electrode, which in connection with switchable device is used for level detection for example in wells, tanks,...
- To be ued in electric conductive fluids and mechanically polluted fluids with temperature: $1^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(33.8^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$.
Suitable for use in drinking water
Stainless steel one-pole electrode reside in PVC cover, intended for tank wall mounting or
- To ensure corret function of the sensor, it is necessary to have the electrode without dirt which could disable the connection of the electrode and fluid and thus lead to malfunction. - Max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG 10).
- Recomended wire Do5V-K0.75/3.2.
ire is connected by feazing of two brass screws to stainless steel electrode.

- Dimensions: max. diameter $21 \mathrm{~mm}\left(0.8^{\prime \prime}\right.$), lenght 96 mm ($3.8^{\prime \prime}$).

Level probe SHR-3

- Stainless probe to be used demanding industrial environments, designated for screwing into tank wall or cover.
- Suitable for use in drinking water

The probe is installed in horisontal, vertical or in sidelong position on tank side or in tank
cover. Installation is done by soldering or by fixing nut. It is necessary to sese 24 mm ($1^{\prime \prime}$) screw. It is necessary to use an adequate torque with regards to a seal and operational overpressure in a tank.

- Sensor has connecting wire - lenght 3 m , which is connected to sensor to scan electrode and sensor bushing connecting wire is double-wire PVC AWG $18\left(0.75 \mathrm{~mm}^{2}\right.$), connection of wires: brown - scan electrode, blue - sensor bushing.
- Connection M18x1.5 screw.
- Protection degree IP 67
- Sensor weight without cable: 100 g (3.3 oz.).

Operating surroundings: place without the danger of detonation, temperature on screw: max. $95^{\circ} \mathrm{C}\left(2030^{\circ} \mathrm{F}\right)$.
Weight 239 gnity: on $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) 4 \mathrm{MPa}$, on $95^{\circ} \mathrm{C}\left(203^{\circ} \mathrm{F}\right) 1.5 \mathrm{MPa}$
Material: bushing and sean electrode: stainless steel W.N. 1.4301, insulation insert of electrode: PTFE.

- Internal material: self- extinguishing epoxide resin.
- Operating temperature: $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$,
- Total sensor lenght: $65.5 \mathrm{~mm}\left(2.58{ }^{\circ}\right)$.

D03VV-F | Three-core cable

cation for drinkin
cation for drinking water, 1 m (39.37"),
Constructio
core insulation of special PVC
core insulation of special
sheath of special PVC.

- Technical specifications and usage
for direct and permanent contact with drinking water according to $\$ 5$ of the Act. $258 / 2000$ Decree of
the Ministry of Health. $409 / 2005$ Sb., On hygienic requirements for products coming into direct contact with drinking water and water treatment
reatment $7{ }^{\circ}\left(158^{\circ} \mathrm{F}\right)$
基table for submersible conductivity probes for the boreholes, wells and tanks
suitable for probes used for level detection of conductive liquid. cable capacity is max. $12.3 \mathrm{nF} / 100 \mathrm{~m}\left(328^{\prime}\right)$

Cross-section

D05V-K | Power cable

Technical parameters

D05V-K 0.75/3.2
Rated voltage:
$300 / 50$
2 kV
Testvolitage
Core dia
section:
Length: $3.2 \mathrm{~mm}\left(0.12^{\prime \prime}\right)$ $0.75 \mathrm{~mm}^{2}$ AWG 18 $1 \mathrm{~m}\left(39.37^{\prime \prime}\right)$

Cable to probes SHR-1 and SHR-2, $3 \times 0.75 \mathrm{~mm}^{2}$ (AWG 18) with a certification for drinking water, $\operatorname{lm}\left(39.37^{\prime \prime}\right)$.

- Construction:
- bright copper stranded core of hole
- insulation of special PVC.
- the product meets requirements for direct and permanent contact with drinking water according to $\$ 5$ of the Act. $258 / 2000$ Decree of the Ministry of Health. $409 / 2005 \mathrm{Sb}$., On hygienic requirements for roducts co
usable up to $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$
- suitable for probes used for level detection of conductive liquids.

		Typ			Sens			Sup							
$\stackrel{\circ}{2}$	$\begin{aligned} & \frac{5}{5} \\ & \frac{\Delta}{\Delta} \end{aligned}$		$\begin{aligned} & \frac{5}{5} \\ & \frac{5}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{訁}} \\ & \underline{\underline{9}} \end{aligned}$	$\begin{aligned} & \text { 鸸 } \\ & \text { 离 } \end{aligned}$	$\stackrel{\text { ² }}{1}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{N}} \\ & \underset{\sim}{4} \end{aligned}$								
TER－3A	$1 \mathrm{M}-\mathrm{din}$	－	\times	\times	－	ntc	\times	\times	－	\times	$\begin{aligned} & -30.10^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{Ft} \text { to } 50^{\circ} \mathrm{F}\right)\left(3^{3}\right. \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left.32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$	\times	single thermostat into a switchboard with external sensor for temperature in cooling and against freezing	104
TER－3B	1M－DIN	－	\times	\times	－	ntc	\times	\times	－	\times	$\begin{gathered} 0.40^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{Fto} \mathrm{to} 04 \mathrm{~F}\right)(32) \end{gathered}$	$0_{0-5{ }^{\circ} \mathrm{C}}$ $32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}$	\times	single thermostat into a switchboards with external sensor for sensing room and operational temperature	104
TER．3C	${ }^{1 M-D I N}$	－	\times	\times	－	NTC	\times	\times	－	\times	$\begin{aligned} & +30.70^{\circ} \mathrm{C} \\ & \left(86^{\circ} \mathrm{Fto} 58^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 0.5-5^{\circ} \mathrm{C} \\ & \left(3.99^{\circ} \mathrm{F} \text { to } 41^{\circ \mathrm{F})}\right. \end{aligned}$	\times	single thermostat into a switchboards with external sensor for sensing temperature in devices （overheating．．．）	104
TER－30	1M－din	－	\times	\times	－	NTC	\times	\times	－	\times	0．． $60^{\circ} \mathrm{C}$ （ $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ ）（32	$0.5-5^{\circ} \mathrm{C}$ $32.9{ }^{\circ} \mathrm{F}$ to $41^{\circ} \mathrm{F}$	\times	single thermostat into a switchboard with externa sensor for sensing operational temperature of machines and devices	104
TER－3E	1M－In	－	\times	\times	－	ntc	\times	\times	－	\times	$\begin{aligned} & 0.60^{\circ} \mathrm{C} \\ & \left(32^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right. \end{aligned}$	$\begin{gathered} 1 \circ c \\ \left(344^{\circ}\right) \end{gathered}$	\times	as TER－3D but with freed hystersis	105
TER－3F	1M－DIN	－	\times	－	\times	ntc	\times	\times	－	\times	$\begin{gathered} 0 . .60^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 113^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 1 \circ \mathrm{C} \\ \left(34{ }^{\circ} \mathrm{F}\right. \end{gathered}$	\times	single thermostat into a switchboard with in－built sensor，moni switchboard	105
TER－36	${ }^{\text {M－DIN }}$	－	\times	\times	－	Pt100	\times	\times	－	\times	$\begin{gathered} 0.0 .60^{\circ} c \\ \left(332^{\circ} \mathrm{Fto} 140\right. \end{gathered}$		x	as TER－3D but with input for sensor Ptioo	104
TER．3H	1M－In	－	\times	\times	－	NTC	\times	\times	－	\times	$-15.45^{\circ} \mathrm{C}$ ${ }^{5} 5^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}$	$\begin{aligned} & 0.5-5^{\circ} \mathrm{C} \\ & \left(32.9 \mathrm{~F} \text { to } 41{ }^{\text {F })}\right. \end{aligned}$	\times	as TER－3A but with a different temperature range－for cooling and heating	104
TER． 4	3M－DIN	－	\times	\times	（2x）	ntc	－	－	\times	－	$\begin{aligned} & -40.110^{\circ} \mathrm{C} \\ & \left(-40^{\circ} \mathrm{Ft}+230^{\circ} \mathrm{F}\right)(322 \end{aligned}$	$\begin{aligned} & 0.5-2.5^{\circ} \mathrm{C} \\ & \left(3.9^{\circ} \mathrm{Fto} 37^{\circ} \mathrm{F}\right) \end{aligned}$	\times	two－state thermostat（ 2 inputs， 2 outputs），two independent or dependent thermostats，accurate setting，wide temperature range	106
Ter． 7	1M－DIN	－	\times	\times	－	PTC	\times	\times	－	\times	\times	$\begin{aligned} & \text { Resistance } \\ & \begin{array}{l} 1.8 .3 .3 \mathrm{kR} \end{array} \end{aligned}$	\times	thermistor relay for protection of motor overheating input designated for sensor PTC in－built in motor winding	110
TER－9	2M－DIN	\times	－	\times	$\stackrel{\bullet}{(2 x)}$	NTC	－	－	\times	－	$-40 . .110^{\circ} \mathrm{C}$ $\left(-40^{\circ} \mathrm{F}\right.$ to $\left.230^{\circ} \mathrm{F}\right)(32$	$0.5-5^{\circ} \mathrm{C}$ $32.9^{\circ} \mathrm{F}$ to $41^{\circ} \mathrm{F}$ ）	\times	multifunction（6thermo functions）digital thermostat with in－built time switch clock， 2 inputs／2 outputs	108
TeV－1	${ }^{\text {P65 5 box }}$	－	\times	\times	－	inte	－	\times	\times	\times	$\begin{aligned} & -20 \cdot-20^{\circ} \mathrm{C} \\ & \left(-4 \mathrm{~F}+\mathrm{Fo} 8^{\mathrm{F}}\right) \end{aligned}$	$\begin{gathered} 1.5^{\circ} \mathrm{C} \\ \left(35^{\circ}\right) \end{gathered}$	\times	thermostat with＂dead zone＂，control of heating and protection against freezing，box for outdoor use with IP65	114
Tev－2	IP65 box	－	\times	\times	－	NTC	－	\times	\times	\times	$\begin{aligned} & -20.20^{\circ} \mathrm{C} \\ & \left(-4 \mathrm{~F}+\mathrm{Fo} 8^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 1.5{ }^{\circ} \mathrm{C} \\ \left(35^{\circ}\right) \end{gathered}$	\times	single thermostat for regulation of heating，short sensor is a part of this device，protection degree IP65	115
tev－3	${ }^{\text {P665 box }}$	－	\times	\times	－	NTC	－	\times	x	\times	$\begin{gathered} 5.35^{\circ} \mathrm{C} \\ \left(41^{\circ} \mathrm{Fto} 149^{\circ} \mathrm{F}\right. \end{gathered}$	$\begin{gathered} \left.1.5^{\circ} \mathrm{C}\right) \\ \left(35^{F}\right) \end{gathered}$	\times	as TEV－2 but potentiometer and indication are placed on front panel	115
TeV－4	${ }^{\text {P665 box }}$	\times	\times	\times	－	ntc	－	\times	\times	\times		$0.5 / 1.5 / 4^{\circ} \mathrm{C}$ （32．9／35／39 ${ }^{\circ} \mathrm{F}$	\times	single exteriors thermostat for monitoring and regulation of temperature in demanding enviroments	116
ATR	elegant	－	\times	－	\times	ntc	－	\times	x	\times	$\begin{gathered} 5.40^{\circ} \mathrm{C} \\ \left(41^{\circ} \mathrm{F} \text { to } 104{ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 1 \circ \mathrm{C} \\ (34 \mathrm{~F}) \end{gathered}$	\times	room analog thermostat line THERMO for mounting into a wiring box	111
ate	elegant	－	\times	\times	－	ntc	－	\times	\times	\times	$\begin{gathered} 5.50^{\circ} \mathrm{C} \\ \left(41^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 1{ }^{\circ} \mathrm{C} \\ \left(344^{F}\right. \end{gathered}$	\times	floor analog thermostat line THERMO for mounting into a wiring box	111
atc	Elegant	－	\times	－	－	NTC	－	\times	x	\times	$\begin{gathered} 5.50^{\circ} \mathrm{C} \\ \left(44^{2} \mathrm{Ftot} 122^{\mathrm{FF}}\right. \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \mathrm{C} \\ \left(34 \mathrm{~F}^{2}\right. \end{gathered}$	\times	room and floor（combined）analog thermostat line THERMO for mounting into a wiring box	111
dт	elegant	\times	－	－	\times	ntc	－	\times	\times	\times	$\begin{aligned} & 5.55^{\circ} \mathrm{C} \\ & \left(41^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right)(32 \end{aligned}$	$\begin{aligned} & .0 .5-^{\circ} \mathrm{C} \\ & 32.9^{\circ} \mathrm{F} \text { to } 344^{\mathrm{F})} \end{aligned}$	\times	room digital thermostat line THERMO for mounting into a wiring box	112
dif	Elegant	\times	－	\times	－	NTC	－	\times	\times	\times	$\begin{aligned} & 5.50^{\circ} \mathrm{C} \\ & \left(41^{\circ} \text { to } 122^{\circ} \mathrm{F}\right)(32 \end{aligned}$	${ }^{0.5 .1-1{ }^{\circ} \mathrm{C}}$	\times	floor digital thermostat line THERMO for mounting into a wiring box	112
dTC	elegant	\times	－	－	－	ntc	－	\times	\times	\times	$\begin{gathered} 5.50^{\circ} \mathrm{C} \\ \left(41^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right)(32 \end{gathered}$		\times	room and floor（combined）digital thermostat line THERMO for mounting into a wiring box	112
RH－1	${ }^{1 M-D I N}$	－	\times	－	\times	built－in	\times	\times	－	\times	$\begin{gathered} 0 . .60^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & \mathrm{H}-4 \% \\ & \begin{array}{c} -2.5^{5} \mathrm{C} \\ \left(3.55^{\circ}\right) \end{array} \end{aligned}$	50．90\％	hygro－thermostat for temperature monitoring and regulation in range $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ and relative humidity in range $50 . .90 \%$	117
RHV－1	1P65	－	\times	－	\times	built－in	\times	\times	\times	\times	$\begin{gathered} -30 . .60^{\circ} \mathrm{C} \\ \left(-22^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 2 \%, 3 \%, 3, \\ 4 \% \% \end{gathered}$		hygro－thermostat for humidity monitoring and regulation in range $0 . .90$ \％RH	118
ATV－1	valve	\times	－	－	\times	built－in	\times	\times	\times	\times	$\begin{aligned} & 8.28^{\circ} \mathrm{C} \\ & \left(46^{\circ} \mathrm{F} \text { to } 82^{2} \mathrm{~F}\right) \end{aligned}$	＊	\times	thermostatic direction valves，temperature regulation +8 to $+28^{\circ} \mathrm{C}\left(46^{\circ} \mathrm{F}\right.$ to $\left.82^{\circ} \mathrm{F}\right)$	113

	$\underbrace{\\| 1 .}$	
Technical parameters	TER-3	
Function:	single level	
Supply terminals:	A1-A2	
Voltage range:	AC/DC 24-240V (galvanically unseparated) (AC 50-60Hz)	
Burden:	max.2va/ı w	
Max. dissipated power (Un + terminals):	2.5 W	
Operating range:	-15\%; 10%	
Measuring circuit		
Measuring terminals:	T1-T1	
Temperature range: (according to product type sensitivity)	 	
Hysteresis:	ajustable in range 0.5 to $5^{\circ} \mathrm{C} / 0.9$ to $99^{\circ} \mathrm{F}$	
Sensor:	external, thermistor NTC, except for TER-3G (Pt100)	
Sensor fault indication (short circuit / disconnect):	flashing red LED	
Accuracy		
Setting accuracy (mech):	5\%	
Switching difference:	$0.5{ }^{\circ} \mathrm{C} / 0.9{ }^{\circ} \mathrm{F}$	
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{C}$ ($\left.0.1 \% /{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSO}_{2}\right)$	
Current rating:	16A/AC1, 10A/24V DC	
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 300 \mathrm{~W} / \mathrm{DC}$	
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$	
Output indication:	red LED	
Mechanical life:	3×10^{7}	
Electrical life (AC1):	0.7×10^{5}	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.1588^{\circ} \mathrm{F}\right)$	
Electrical strength:	2.5 kV (supply - output)	
Operating position:	any	
Mounting:	DIN rail En 60715	
Protection degree:	IP40 from front panel/ /P10 terminals	
Overvoltage category:	11.	
Pollution degree:	2	
Max. cable size (mm):	solid wire max. 2×2.5 or 1×4 with sleeve max. 1×2.5 or 2×1.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.77^{*} \times 2.5^{\prime \prime}\right)$	
Weight:	$64 \mathrm{~g}(2.3$ Oz); TER-3G: 68 g (2.4 02.)	
Standards:	EN 60773-2-9, EN 61010-1	

Example of an order

Please specify a type of thermostat in your order (TER-3A, TER-3B .. or TER-3H) types differ in temperature range and supply voltage.

Single thermostat for temperature monitoring and regulation in range $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ in six ranges. ing systems, cooling systems, liquids, radiators, motors, devices, ope spaces, etc.
-Function of short-circuit or sensor disconnection monitoring.
Possibility to set function "heating"/"cooling" (setting is done by DIP
switch). Adjustable hysteresis (sens
range 0.5 to $5^{\circ} \mathrm{C} / 0.9$ to $9^{\circ} \mathrm{F}$
range 0.5 to $5^{\circ} \mathrm{C} / 0.9$ to $9^{\circ} \mathrm{F}$, Choice of external temperature sensors with do
standard lengths 3,6 and $12 \mathrm{~m}\left(9.8^{\prime}, 19.7^{\prime}\right.$ and $\left.39.4^{\prime}\right)$
tandard 1 is possible to place sensor directly 3 and 39.4).
ture monitoring in a switchboard or in its surroundings - for tempera - Multivoltage supply AC/DC 24-240 V, not galvanically separated.

- Output contact 1x NO - SPST 16 A / 250 V AC1.
- Red LED indicates status of output, green LED indicates energization of the device.
1-MODULE, DIN rail mounting.
Description

Function

It is a single but practical thermostat with separated sensor for monitoring It is a single but practical thermostat with separated sensor for monitoring
temperature. Device is placed in a switchboard and external sensor senses temperature of required space, object, or liquid. Supply is not galvanically separated from sensor. Sensor is double insulated. Maximall length of delivered sensor is $12 \mathrm{~m} / 39.4$.'device has in-built indication of sensor damage, which means that in case of short-circuit or disconnection red LED flashes. Thanks to
ddjustable hysteresis, it is advantageous to regulate width of the range and adjustabie hysteresis, tit sadvantageous to regulate width of the range and
thus define sensitivity of load switching. Sensed temperature is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

Connection
Symbol

Technical parameters	TER-3E TER-3F
Function:	single level
Supply terminals:	A1-A2
Voltage range:	AC/DC $24-240 \mathrm{~V}$ ($\mathrm{AC} 50-60 \mathrm{~Hz}$)
Burden:	max. $2 \mathrm{VA} / 1 \mathrm{w}$
Operating range:	
Measuring circuit	2.5 W
Measuring terminals:	- 15%; $+10 \%$
Temperatur range:	
Hysteresis:	T1-T1
Sensor:	0 to $+60^{\circ} \mathrm{C} /\left(32^{\circ} \mathrm{Fto} 140^{\circ} \mathrm{F}\right)$
Sensor faut indic.	fixed $1^{\circ} \mathrm{C} /\left(1.8^{\circ} \mathrm{F}\right)$
(short-circuit/disconnection):	thermistor NTC in-built
Accuracy	
Setting accuracy (mech.):	flashing red LED
Switching difference:	
Temperature dependance:	5\%
Output	$0.5{ }^{\circ} \mathrm{C}\left(0.9{ }^{\circ} \mathrm{F}\right)$
Number of contacts:	$<0.1 \% /{ }^{\circ} \mathrm{C}$ (${ }^{\text {F }}$)
Currentrating:	
Breaking capacity:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSO}_{2}\right)$
Switching voltage:	16A/AC1,10 A/24VDC
Output indication:	$4000 \mathrm{VA} / \mathrm{AC1}, 300 \mathrm{~W} / \mathrm{DC}$
Mechanical life:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Electrical life (AC1):	red LED
Other information	3×10^{7}
Operating temperature:	0.7×10^{5}
Storage temperature:	
Electrical strength:	$-20^{\circ} \mathrm{Cto} 55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Operating position:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158^{\circ} \mathrm{F}\right)$
Mounting:	2.5 kV (supply - output)
Protection degree:	any
Overvoltage category:	din rail En 60715
Pollution degree:	IP40 from front panel//P10 terminals
Max. cable size (mm):	III.
	2
Dimensions:	solid wire max. 2×2.5 or 1×4
Weight:	with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Standards:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5\right)^{\prime}$
	$64 \mathrm{~g}(2.3$ Oz.) $60 \mathrm{~g}(2.1$ Oz.)
	EN 60773-2-9, EN $61010-1$

Single thermostat for temperature monitoring and regulation in
range 0 to $+60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$.
It can be used for temperature monitoring e.g. in switchboards, heating systems, liquids, radiators, motors, devices, open spaces, etc.

- Fixed hysteresis at $1^{\circ} \mathrm{C} /\left(1.8^{\circ} \mathrm{F}\right)$.

TER-3E:Choice lexternal temperature sensors with double insulation device, serves for monit in a switchboard.
Supply voltage AC /DC 24-240 V.
Output contact $1 \times$ NO- SPST 16 A $/ 250 \mathrm{VAC}$
Output status is indicated by red LED.
1-MODULE, DIN rail mounting.

Description

Function

It is a single thermostat for temperature monitoring with separated sensor (except for TTE-3F). Device is located in a switchboard and external
sensor senses temerature of sensor senses temperature of required space, object or liquid. Supply is
not galvanically separated from sensor but sensor is double insulated. Maximal length of sensor cable is $12 \mathrm{~m}(39.4)$. Temperature sensing is decreased by set hysteresis. When installing it is necessary to keep in mind hat hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

Connection

Symbol

Example of an order

Please specify a type of thermostat in your order (TER-3E, TER-3F),

Function

Each thermostat has its own temperature sensor, coarse and fine temperature setting, hysteresis setting and its output relay
The set temperature is set as the sum of the selected temperature range and fine temperature setting
Example: Required temperature..... $+25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { Required temperature.... } \\
& \text { Setrange..... }+20^{\circ} \mathrm{C} \\
& \text { Fine setting } 5^{\circ} \mathrm{C}
\end{aligned}
$$

The device monitors the failure status of each sensor (short circuit or interruption) - if the sensor fails, the yellow LED is lit and the corresponding red LED fashes. The relevant relay is disconnected when it fails

The device can also be operated as a single thermostat (single sensor). In this case, a $10 \mathrm{k} \Omega$ resistor (part of the product package) must be connected to the

Independent thermostat function
The device acts as 2 single simple thermostats

$\frac{\text { Dependent function of thermostats }}{\text { The thermostats are connected }}$
The thermostats are connected "in series"- i.e. the thermostat 1 is blocked by thermostat 2. This can be used, for example, when thermostat 1 is operational and the thermostat 2 is blocked (emergency-for example, when overheating the device).

| | |
| :--- | :--- | :--- |

-Digital thermostat with 6 functions and built-in time switch clock with day, week and year program. You can also limit temperature functions
and courses this way in real time. and courses this way in real time.

- Complex control of home and water heating, solar heating, etc.
- Two thermostats in one, two temperature inputs, two outputs with
dry contact.
Maximum universal and variable thermostat including all ordinary - Functions: two independent thermostats, dependent thermostat, dif ferential thermostat, two level thermostat, zone-based thermostat dead zone thermostat.
- Program setting of output functions, calibration of sensors according to reference temperature (offset).
- The thermostat is subject to the digital clock programs.
- Wide operating range of temperature settings, the possibility of measuring in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$.
- Clear display of set and measured data on a backlit LCD.
- Power supply: AC 230 V or 24 V AC/DC (based on type of device).
- The time switch clock has a battery backup, which retains data in case
of a power outage (reserve backup time - up to 3 years) of a power outage (reserve backup time - up to 3 years). - Easy replacement of tisassembling is required.
- Output contact $1 \times$ changeover $/$ SPDT $8 \mathrm{~A} / 250 \mathrm{~V}$ AC1 for each output. - 2 -MODULE, DIN rail mounting.

Device description

Description of visual elements on the display

Connection

Symbol

1.2 independent single-stage thermostats

Classic function of thermostat, output contact switched unti aduusted temperature is reached. Hysteresis eliminates fre quent switching - output oscillation.
2. Depending functions of 2 thermostats

3. Differential thermostat

Switching of output corresponds with input, which has lower temperatures when diffference is exceeded.
Differencial thermostat is used for keeping two identical tem perature e.g. in heating systems (boiler and reservoir), solar systems (collector- reservoir, exchanger), water heating (wa-
ter heater, water distribution)etc.
4. 2 -stage thermostat

Typical example of use for two-stage thermostat is e.g in boil-er-room, where there are two biolers from which one is mai and the other one is auxiliary. The main boiler is managed ac
cording to set temperature and auxiliary boiler is switched in case temperature falls under set difference. Thus it helps to the main boiler in case outside temperature dramatically
falls. falls.
In the In the range of set difference (D) output $15-18$ functions as nalls under set difference, second output switches too.

6. Thermostat with dead zone

Output $15-18$ is closed, if temperature of both thermostats is bellow an adjusted level When any thermostat reaches ad Serial inner connection of thermostats (logic function AND).

Output is closed (heating) only if temperature is within ad justed range. If temperature is out of range, the contact The function is used for protection of gutters against freezing

In case of thermostat with a dead zone", it is possible to set temperature T 1 and a difference (respectively a width of dead zone D). If temperature is higher than T , output contact of cooling switches ON ; if the temperature gets bellow T 1 , th contact switches OFF.
If the temperature gets bellow temperature T, the contac ture T is exceeded. This function can be used for example for automatic air warming and cooling in ventilation so the sit is automatic arr warming and cooln
always within the range T1 and T.

Technical parameters	TER-7
Function:	monitoring temperature of motor winding
Supply terminals:	A1-A2
Voltage range:	AC/ DC 24-240V (AC 50-60Hz)
Burden:	max. $2 \mathrm{VA} / 1 \mathrm{~W}$
Max. dissipated power	
(Un+ terminals):	2.5 W
Operating range:	$-15 \% ;+10 \%$
Measuring circuit	
Measuring terminals:	Ta-Tb
Cold sensor resistance:	50 Ω - 1.5 k Ω
Upper level:	$3.3 \mathrm{k} \Omega$
Botton leve:	1.8 k ת
Sensor:	PTC temperature of motor winding
Sensorfailure indication:	blinking red LED
Accuracy	
Accuracy in repetition:	<5\%
Switching difference:	$\pm 5 \%$
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{C}$
Output	
Number of contacts:	$2 \times$ changeover / DPDT (AgNi / Silver Alloy)
Current rating:	$8 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	$2000 \mathrm{VA} / \mathrm{ACL}, 192 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$10 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Mechanical life:	3×10^{7}
Electrical life (resistive):	0.7×10^{5}
Other information	
Operating temperature:	$-20^{\circ} \mathrm{Cto} 55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply -output)
Operating position:	any
Mounting:	din rail en 60715
Protection degre:	IP40 from front panel/ /P20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5\right)$
Weight	71 g (2.5 oz)
Standards:	en 60730-2-9, en 61010-1

Note

Sensors could be in series in abide with conditions in technical specification - switching limits.

Warning:

In case of supply from the main, neutral wire must be connected to

- It monitors motor coil temperature.
- Fixed levels of switching.
- PTC sensor is used for sensing, it is in-built in motor winding by its manufacturer or there is used an external PTC sensor.
- MEMORY function - relay is blocked in an error state until until operato intervention (press RESET button).
RESET of faulty state:
a) button on the front
b) by external contact (remote by two wires)

Function of short-circuit or sensor disconnection monitoring, red LED flashing indicates faulty sensor.
Output contact: $2 \times$ changeover / DPDT 8 A/250V AC
Red LED shines and indicates exceeded temperature.
Terminals of sensor are galvanically separated, they can be shorted out
by terminal PE without damal
Multivoltage supply AC/DC 24-240 V

- 1-MODULE, DIN rail mounting.

Description

Function

The device controls temperature of motor winding with PTC thermistor which is mostly placed in motor winding or very close to it. Resistance of PTC ther-
mistor run to max 1.5 k in cold stage. By temperature increase the resistance mistor run to max $1.5 \mathrm{k} \Omega$ in cold stage. By temperature increase the resistance
goes strongly up and by overrun the limit of $3.3 \mathrm{k} \Omega$ the contact of output relay switch off - mostly contactor controlling a motor. By temperature decrease and thereby decrease of thermistor resistance under $1.8 \mathrm{k} \Omega$ the output
contact of relay again switches on. The relay has function "Contro of sensor contact of relay again switches on. The relay has function "Control of sensor
fautt". This controls interruption or disconnection of sensor. When switch is in position "TK" monitoring of faulty sensor is not functional -it is possibel to connect bimetal sensor with only 2 states: ON or OFF. The device can work with bi-metal sensor in this position. Other safety unit is function "Memory".
By temperature overrun (and output switches off) the output is hold in faulty By temperature overrun (and output switches off) the output is hold in fauty
stage until service hit. This bring the relay to normal stage (with RESET button) on front panel or by external contact (remote).
Connection

ATR - Analog Thermo Room

- Room thermostat with tem - Room thermostat with te
- Floor thermostat with temperature range 5 to $50^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
- Function, temporary. temperature change" in range $\pm 10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ (decreasing / increasing temperature).
ATC Analog Thermo Combind:
ATC - Analog Thermo Combined
- Room and floor thermostat, se
shors are connected in series and block
- Function, temporary temperature change", fix-5 $5^{\circ} \mathrm{C} / 23^{\circ} \mathrm{F}$ (night decline). - Temperature range 5 to $50^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ for both sensors, adjustable separately.
-It is possible to use it without external sensor.
- Night decline is activated by a pushbutton on device or external contact (only ATR).
- Night decline setti
Night decline setting is done by an auxiliary button 2 (under main
Ofset setting (calibration $\pm 10^{\circ} \mathrm{C} / 50^{\circ} \mathrm{F}$) with ,known"t thermometer. - External sensor (TC-3.3 $3 \mathrm{~m} / 9.84^{4}$) is a part of delivery (only ATF/ATC), it is possible to extend its length up to $100 \mathrm{~m}(328)$.
- Design ELEGANT, wide range of colors, possibility to combine more - Design ELEGANT,
frames together.

Description

Complete offer of switching devices line ELEGANT can be found in an individual catalogue ELEGANT Home switches, which can be sent to you upon request.

This energy-saving digital thermo-valve is a programmable regulation device for various heaters, but mainly radiators

- It can be used to regulate temperature in closed rooms, thus helping to
lower heat energy consumption. lower heat energy consumption
Functions:
Automatic mode- measuring and checking a manually set temperature. ne program: - control between two temperatures based on a set comfort temperatur (factory settins $21^{\circ} \mathrm{C} / 70^{\circ} \mathrm{F}$
energy-saving temperature (factory settings $16^{\circ} \mathrm{C} / 61^{\circ} \mathrm{F}$).
Intervals of heating and energy-saving operation can be set using a Intervals of heating and energy.
freely adjustable time program.
-8 individually programmable switching times per day:
8 individually programmable
.4 heating intervals
.4 energy-saving intervals.
The device features very quiet operation and long battery life (up 5 years).
Quick and easy installation.
Description of device

Other functions
1.Time function - the desired temperature can be set for a certain adjustable time interval.
Vacation function - while you're gone, you can set and maintain the desired temperature.
3. Open window function - when the temperature drops, the heating valv
automatically closes in order to save energy.
4. Child safety block - blocking against undesired interference with the ther5. Freeze
5. Freeze protection - if the temperature drops below $6^{\circ} \mathrm{C}\left(43{ }^{\circ} \mathrm{F}\right)$, the valve opens until the temperature again exceeds $8^{\circ} \mathrm{C}\left(46^{\circ} \mathrm{F}\right)$. This keeps heaters from freezing.
Adjustment ATV-1
manual
via USB programming adapter PROGmatic
Using the programming port, in seconds your settings will be transferred into

LIVIIG ROOM

Adapters

$\underset{\substack{\text { EAN Code } \\ \text { TEV: } 1855518581292121}}{ }$
Technical parameters TEV-1

Technical parameters	TEV-1
Function:	two-level thermostat
Supply terminals:	L-N
Voltage range:	$230 \mathrm{VAC} / 50-60 \mathrm{~Hz}$
Input:	max. $2.5 \mathrm{VA} / 0.5 \mathrm{~W}$
ssipated power	
+ terminals:	3 W
Tolerance of voltage range:	$\pm 15 \%$
Measuring circuit	
Measuring terminals:	T-T
Temperature ranges	
thermostat 1:	-20 to $20^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 68^{\circ} \mathrm{F}\right)$
ermos	-20 to $20^{\circ} \mathrm{C}\left(-44^{\circ} \mathrm{Fo} 688^{\circ} \mathrm{F}\right)$
Hysteresis (Sensitivity):	$3^{\circ} \mathrm{C}\left(\pm 1.5^{\circ} \mathrm{C}\right) / 37.4{ }^{\circ} \mathrm{F}\left(\pm 34.7{ }^{\circ} \mathrm{F}\right)$
Sensor:	thermistor NTC $12 \mathrm{~K} 2 / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
Faulty sensor indication:	red LED flashing
Accuracy	
Accuracy of settings (mech.):	5\%
Dependance on temperature:	$<0.1 \% /{ }^{\circ} \mathrm{C}\left({ }^{\text {FF }}\right.$)
Output	
mber of contacts:	1x changeover / SPDT (AgNi / Silver Alloy)
Current rating:	16A/AC1
Max. breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1} 1,384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC1}$
Output indication:	LED
Mechanical life:	3×10^{7}
Electrical life:	0.7×10^{5}
Other information	
Operation temperature:	$-30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Operation position:	any
Protection degree:	\|P65
Overvoltage category:	III.
Pollution level:	2
Max. cable size (mm):	solid wire 2.5/

Dimensions:
Weight:
With sleeve $1.5(\mathrm{AWG}$ (12)
$110 \times 13 \times 66 \mathrm{~mm}\left(4.33^{\prime} \times 5.3^{\prime \prime} \times 6.6\right)$

Connection

S5	π

Function cooling sum ice
[ab

Two-level thermostat with function "WINDOW" meaning that output is switched in case the measured temperature is within set range (adjust able in range $-20 .+20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $+68^{\circ} \mathrm{F}$).
Used as protection against freezing (water-shoots, pavements, drives,
pipes, etc.) heating is on when temperature falls under set upper level pipes, etct.) heating is on when temperature falls under set upper leve $-50{ }^{\circ} \mathrm{F}$, when heating is not able effectively operate).

> Thermostat is placed in water-prooo box lation outside, with in-built sensor TZ-0.

- Thermostat is placed in water-proof box with IP65, which allows instal
-Thermostat status is indicated by LED (3 colors) under transparent
- Function monitoring short-circuit and sensor disconnection (break). - Output changeover contact $16 \mathrm{~A} /$ SPDT (AC-1).

Description

Technical parameters	TEV-2	TEV-3
Function:	one-level thermostat	
Supply terminals:	L-N	
Voltage range:	$230 \mathrm{VAC} / 50-60 \mathrm{~Hz}$	
Input:	max. $2.5 \mathrm{VA} / 0.5 \mathrm{~W}$	
Max. dissipated power:	3 W (Un+terminals)	
Tolerance of voltage range:	$\pm 15 \%$	
Measuring circuit		
Measuring terminals:	T-T	
Temperature ranges:	-20 to $20^{\circ} \mathrm{C}\left(-4\right.$ to $\left.688^{\circ} \mathrm{F}\right)$	5 to $35^{\circ} \mathrm{C}\left(41\right.$ to $\left.95^{\circ} \mathrm{F}\right)$
Hysteresis (sensitivity):	$3{ }^{\circ} \mathrm{C}\left(\pm 1.5^{\circ} \mathrm{C}\right) / 37.4{ }^{\circ} \mathrm{F}\left(\pm 34.7{ }^{\circ} \mathrm{F}\right)$	
Sensor:	thermistor NTC $12 \mathrm{k} \Omega$	
Fauty sensor indication:	red LED flashing	
Accuracy		
Accuracy of settings (mech.):	5\%	
Dependance on temperature:	$<0.1 \% /{ }^{\circ} \mathrm{C}\left({ }^{\text {F }}\right.$)	
Output		
Number of contacts:	1x changeover / SPDT (AgNi / Silver Alloy)	
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$	
Max. breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$	
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~S}$	
Switched voltage:	$250 \mathrm{VAC1}$	
Output indication:	red LED	
Mechanical life:	3×10^{7}	
Electrical Ife (AC1):	0.7×10^{5}	
Other information		
Operation temperature:	-30 to $50^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	
Operation position:	any	
Protection degree:	1P65	
Overvoltage category:	III.	
Polution leve:	2	
Max. cable size (mm)':	solid wire 2.5 / with sleeve 1.5 (AWG 12)	
Dimensions:	$110 \times 135 \times 66 \mathrm{~mm}\left(4.33^{*} \times 5.3^{\prime} \times 2.3\right)$	
Weight:	270 g (9.5 oz.)	274 g (9.7 oz.)
Standards:	en 60730-2-9, EN 61010-1	

Connection

symbo

Single thermostat with possibility of temperature management in ad-
justable range justable range (it is possible to modify this range or make a special one on request).
Sided humidity dustines (or cooling) in demanding environments (out side, humidity, dustiness, etc.).
Thermostat is placed in water-proof box with IP65 protection, which
cover.
TEV-3: control and indication elements are placed directly on the cover (for easy orientation and frequent change of temperature)
Thermostat status is indicated by LED (2 colours).
Thermostat status is indicated by LED (2 colours).
Output $1 \times$ changeover / SPDT contact 16 A (AC-1)

Function TEV-2,TEV-3

TVV-2 and TEV-3 are universal single thermostats for universal use in case ambient temperature is higher than set temperature relay is open (function HEATING), for cooling function (opposite function) is possible
a cenc contact of relay (V2). function HEATING), for cooling
to use NC contact of relay (V2).

Technical parameters	TEV-4
Supply	
Supply terminals:	L-N
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Input (apparent/ /loss):	max.6VA/0.7W
Max. dissipated power	
(Un + terminals):	2.5 W
Tolerance of voltage range:	- 15% \%. $+10 \%$
Function	setting by jumper 33
Function - **:	cooling
Function-11:	heating
Temperature setting	by jumper 12
- range 1:	$-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.32^{\circ} \mathrm{F}\right)$
- range 2:	$0^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}\left(322^{\circ} \mathrm{Fto} 86{ }^{\circ} \mathrm{F}\right)$
- range 3 :	$30^{\circ} \mathrm{Cto} 60^{\circ} \mathrm{C}\left(86{ }^{\circ} \mathrm{Fto} 140{ }^{\circ} \mathrm{F}\right)$
Slight temperature setting:	potentiometer
Hysteresis	$0.5 / 1.5 / 4^{\circ} \mathrm{C}\left(32.9 / 34.7 / 39.2{ }^{\circ} \mathrm{F}\right)$
Hysteresis setting:	by jumper $\boldsymbol{1}$
Output	
Output contact:	$1 \times$ NO-SPST (AgSOO)
Current rating:	12A/AC1
Max. breaking capacity:	$3000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Mechanical life:	3×10^{7}
Electrical lif:	0.7×10^{5}
Other information	
Operation temperature:	$-30^{\circ} \mathrm{Cto} 65^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 149{ }^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158^{\circ} \mathrm{F}\right)$
Electrical strengh:	4 kV (supply-output)
Operation position:	sensor-side down
Protection degre:	$1 \mathrm{P65}$
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm):	max. 1×2.5, max. $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Suggested powersupply cable:	CYKY 3x2.5 (CYKY 4x1.5)
Dimensions:	$153 \times 62 \times 34 \mathrm{~mm}\left(6^{\prime \prime} \times 2.44^{4} \times 1\right)$
Weight:	$123 \mathrm{~g}(4.302$.
Standards:	en 60730-2-9, en 61010-1

Single point thermostat for monitoring and regulation of temperature in demanding enviroments (humid and contaminated, agressive and defective, industrial workshops, washing rooms, green-houses, cellars and cooling boxes...)
External version in IP65, box for mounting on the wall.
Built-in thermo-sensor is integrated in the device.

- 3 adjustable (by jumper) ranges of temperature, and fine adjustmen
-3 adjustable (by jumper)
through potentiometer.
- 3 adjustable (by jumper) levels of hysteresis.
- Supply voltage 230 V AC.
- Potentialless NO-SPST contact $12 \mathrm{~A} \mathrm{AC1}$ switching.

Connection

Description of function
Device is standardly supplied with jumper L-15 (3-wire connection). For the correct function of device is neccesary sensor-side down device mounting.

Technical parameters	RHT-1
Function:	hygro-thermostat
Supply terminals:	Al_{1} - ${ }^{2}$
Voltage range:	24-240VAC/DC (AC $50-60 \mathrm{~Hz}$)
Input:	max. $1 \mathrm{VA} / 0.5 \mathrm{~W}$
Max. dissipated power	
(Un + terminals):	2.5 W
Tolerance of voltage range:	-15\%; 10%
Measuring circuit	
Temperature range:	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Humidity range:	50. 90%
Temperature hysterisis:	$2.5{ }^{\circ} \mathrm{C}\left(4.5{ }^{\circ} \mathrm{F}\right)$
Humidity hysterisis:	4\%
Sensor:	internal
Indication of sensor's fault:	red LED flashing
Accuracy	
Setting accuracy (mechanical):	5\%
Long-term stability of	
humidity:	typical $<0.8 \%$ / year
Output	
Number of contacts:	$1 \times \mathrm{NO}$-SPST (AgSSO)
Current rating:	$16 \mathrm{~A} / \mathrm{AC} 1,10 \mathrm{~A} / 24 \mathrm{VDC}$
Switched output:	$4000 \mathrm{VA} / \mathrm{AC1} 1,300 \mathrm{~W} / \mathrm{DC}$
Switched voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Output indication:	red LED Shines
Mechanical life:	3×10^{7}
Electrical lif:	0.7×10^{5}
Other information	
Operational temperature:	$-20^{\circ} \mathrm{Cto} 60^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 140^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strengh:	2.5 kV (supply-output)
Operational position:	vertical, with correct orientation
Mounting:	DIN rail en 60715
Protection degree:	\|P40 from front panel, IP10 on terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	max. 2×2.5, max. 1×4 with sleeve max. 1×2.5, max. 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{*} \times 0.7^{\prime} \times 2.5{ }^{5}\right)$
Weight:	63 g (2.2 oz.)
Standards:	EN 60730-2-9, en 61010-1

Hygro-thermostat for temperature monitoring and regulation in range
$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$) regulation in range $50 \ldots . .90 \%$. Possibility of
function permanently up to 8 ditions for contact switching and function permanently ON/OFF.
Sensor is a part of the device - designated for measuring in switch
Function of sensor control (damage, disturbances...).
Fixed setting of temperature hysteresis at $2.5^{\circ} \mathrm{C}\left(4.5^{\circ} \mathrm{F}\right)$ and humidity at 4\%.
Output state is indicated by red LED.
Supply voltage AC/DC $24-240 \mathrm{~V}$.
-MODULE CIXNO-SPST 16 A/250 V AC1

Device description

Indication of suplly voltage

Funcions
Choice of function Relay switched under the following conditions

A	$T>$ Tset	or	RH > RHset
B	$T<$ Tset	or	RH $>$ RHset
c	$T>$ Tset	or	RH < RHset
D	$T<$ Tset	or	RH < RHset
E	$T<$ Tset	and	RH < RHset
F	$T>$ fset	and	RH < RHset
G	T<Tset	and	RH $>$ RHset
н	$T>$ set	and	RH>RHset
on	relay permanently ON		
OFF	relay permanently OfF		

This device is designated for monitoring of parameters of environment (meaning temperature and relative humiditit) in switchboards. It enables
setting of eight conditions of constact closing and therefore it is usble setting of eitght conditions of constact closing and therefore it is usable
for various types of load (e.g. fans, heating, iir-conditioning, dehydrating units...).
While installing it is neccessary to take into account the fact that hysteri-
sis rises by persistence of measured yalues sis rises by persistence of measured values between sensor and ambient environment.
The device is equipped by sensor fault detection. In case of sensor fault,
exceeding allowed limits (for temperature $-30^{\circ} \mathrm{C} /-22^{\circ} \mathrm{F}$ and $+80^{\circ} \mathrm{C} /$ $176{ }^{\circ}$ F; for humidity 5% and 95%) or in case of faulty internal communca-
tion higher than 50% (due to eg high ambient disturbances) contact tion higher than 50% (due to e.g. high ambient disturbances) contact
opens and sensor fault is indicated. Sensor fault doesn't have influence opens and sensor fault is indicated. Sensor fault doesn't have influence Note: In case the conditions for switching are not
Symbol
Connection

Technical parameters	RHV-1
Supply	
Supply terminals:	L-N
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Input (apparent/loss):	max. $6 \mathrm{VA} / 0.7 \mathrm{~W}$
Max. dissipated power:	2.5 W (Un+terminals)
Input voltage range:	-15\%..+10\%
Setting function	Setting function Jumper 3 3
Function - 0 :	moistening
Function - \%	drying
Set. the scale of relative humidity	dity Humidity setting Jumper $J 2$
- range 1 :	$0 . .30 \% \mathrm{RH}$
-range 2:	$30 . .60 \%$ RH
- range 3 :	$60 . .90 \% \mathrm{RH}$
Slight setting of felative humidity:	Relative Humidity Setting Potentiometer
Hysteresis	2,3,4\% from setup rate
Hysteresis setting:	Jumper J1
Output	
Output contact:	$1 \times$ NO-SPST (AgSnO ${ }_{2}$)
Current rating:	$12 \mathrm{~A} / \mathrm{AC1}$
Switching output:	$3000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Mechanical life:	3×10^{7}
Electrical life:	0.7×10^{5}
Other information	
Operation temperature:	$-30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 140^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Electrical strengh:	4 kV (supply-output)
Operation position:	sensor-side down
Protection degree:	1P65
Overvoltage cathegory:	11.
Pollution degre:	2
Max. cable size (mm):	max. 1×2.5, max. $2 x 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Suggested powersupply cable:	CYKY 3x2.5 (CYKY 4x1.5)
Dimensions:	$153 \times 62 \times 34 \mathrm{~mm}\left(6^{6} \times 2.44^{4} \times 1.3^{\prime \prime}\right)$
Weigh:	$124 \mathrm{~g}(4.40 \mathrm{z}$)
Standards:	En 60730-2-9, en 61010-1

- Single hygrostat is used for regulation of humidity in harsh environments (washdown, greenhouse, refrigeration).
- External version in IP65, box for mounting on the wall.
- Built-in hygro-sensor is integrated in the device.
- Two functions adjustable by jumper: moisting and drying.
- 3 adjustable (by jumper) levels of hysteresis.
voltage 230 VAC .
- NO contact closure 12A/AC1.

Connection

Description of function

Device is supplied with a standard jumper.
For the device to
For the device to operate correctly, it must be mounted with the sensor
side down.

TC, TZ, Pt100 | Thermo sensors

Technical parameters	TC	TZ	Pt100
Range:			
Scanning element:	NTC 12K 5\%	NTC 12K 5\%	Pt100
In air / in water:	(665) $92 \mathrm{~s} / 23 \mathrm{~s}$	(t65) $625 / 8 \mathrm{~s}$	($\mathbf{0}$.5) - $/ 7 \mathrm{~s}$
In air / in water:	(T95) $306 / / 565$	(T95) $216 \mathrm{~s} / 23 \mathrm{~s}$	($\mathbf{0} 0.9$) -119 s
Cable material:	High temperature PVC	Silicone	Silicone
Terminal material:	$\begin{aligned} & \text { High temperature } \\ & \text { PVC } \end{aligned}$	Nickel plated copper	Copper
Protection degree:	1P67	1P67	P667
Insulation:			double insulat

Types of temperature sensors

	TC-0	TZ-0	
- length: -weight:	100 mm	110 mm	
	59	4.5 g	
	TC-3	TZ-3	Pt100-3
- length: - weight:	3 m	3 m	3 m
	1089	1069	68 g
	TC-6	TZ-6	Pt100-6
- length: -weight:	6 m	6 m	6 m
	2139	2169	1499
- length:	TC-12	TZ-12	Pt100-12
	12 m	12 m	12 m
	466 g	4189	249 g

T65 (95): time, which sensor needs to heat up on 65 (95) \% of ambient temperature of environment, in which is located.

Thermister temperature sensors are made of Negative Temperature Coefficient (NTC) embedded in a PVC or metal sleeve with a thermallyconductive sea

- Sensor TC
le to sensor TC is made of wire CYSY $2 \mathrm{D} \times 0.5 \mathrm{~mm} / 0.02^{\prime \prime}$
Sensor TZ
Cable VO35S-F $2 \mathrm{D} \times 0.5 \mathrm{~mm}$
Sensor Pt100
- shielded silicon $2 \times 0.22 \mathrm{~mm}^{2}$ (AWG 21), shielding connected with a case.
erature sensors can be connected directly to the terminal block - Cable lengths can not be changed, connected or modified.

Resistive values of sensors in dependance on temperature

Temperature (${ }^{\circ} / 1 / \mathrm{F}$)	Sensor NTC (kN)	Sensor Ptioo (Ω)
20/68	14.7	107.8
$30 / 86$	9.8	111.7
$40 / 104$	6.6	115.5
$50 / 122$	4.6	119.4
60/140	3.2	123.2
70/158	2.3	127.1

Tolerance of sensor NTC $12 \mathrm{k} \Omega$ is $\pm 5 \%$ by $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$. Long-term resistence stability by sensor Pt100 is 0.05% (10000 hours).

Diagramm of sensor warm up via air

s [min]
VC -reaction to water temperature from $22.51^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$
om $72.5^{\circ} \mathrm{F}$ to $136.4^{\circ} \mathrm{F}$).
perature from $22.5^{\circ} \mathrm{C}$ to $63.5^{\circ} \mathrm{C}$ (rom $72.5^{\circ} \mathrm{F}$ to 144.5° F).

TELVA 230V, TELVA 24V | Termodrive

Settings:
Cable length:
化位 temperature:
ensions $h / w / d:$

LVA 230V	LVA 24
$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	24V, 50/60 Hz
300 mA for max. 2 min	250 mA for max. 2 min
8 mA	75 mA
cca 3 min.	cca 3 min.
1.8 W	1.8 W
\|P $54 / 11$	\|P $54 / 11$
4 mm	4 mm
$100 \mathrm{~N} \pm 5 \%$	$100 \mathrm{~N} \pm 5 \%$
1 m	1 m
$2 \times 0.75 \mathrm{~mm}^{2}$	$2 \times 0.75 \mathrm{~mm}^{2}$
0. $+100^{\circ} \mathrm{C}$	0.. $+100^{\circ} \mathrm{C}$
white RAL9003	white RAL 9003
$55+5 \times 44 \times 61 \mathrm{~mm}$	$55+5 \times 44 \times 61 \mathrm{~mm}$

The thermo-regulation drive TELVA is used to control underfloor and radiator hot-water heating.
hisknownfor its quietoperation.It has a built-in valve position indicato By mounting using the VA valve adapter, the thermo-regulation drive TELVA is applicable for a wide range of thermostatic valves available on the marke
Design
without voltage open (NO)
without voltage closed (NC)

types of thermo actuators:

TELVA 230V, NO
telva 230V, NC
TELVA 24V, NC
Type of use:
Underfloor heating - wireless controller RFTC-50/G measures the room temperature, and based on the set program, sends a command to th
switching unit RFSA - 66 M to open / close the thermo-regulation drive TELVA at the distribution.

It is generally supplied with a valve adapter VA-80 in low design with bar M30 1.5 (white-gray), which may not be compatible with all type of valves.
(V) Voltage

1 phase

3 phase

Synchro-check

Reverse power

Ground fault

Speed sensing

Every type name has a logic explanation and lets you know everything you need to know to make a great choice:

Connection

These units monitor a singe phase supply and operate relays if the phase voltage goes below or above set levels. Front panel controls al phase voltage go
low selection of:

- Under-and Over-voltag
- nominal rated voltage,
- differential voltage for operating hysteresis and
- time delay before a trip triggers a relay respons.
- LEDs indicate power on and trip status. A relay with two changeover volt-free contacts is fitted.
-These instructions contain important safety information. Please read them thoroughly before commissioning, operating or maintenance of the unit.

Device description

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies.
As the relays have changeover contacts, the relay outputs can be inver
nit obtains its power from the separate auxiliary supply. The green Under normal conditions this supply is present.
Under normal conditions, with voltage at nominal level, both red LED will be off, the Under relay will be energised and the Over relay will be
de-energised. With mains supply off both relays will be der de-energised. With mains supply off, both relays will be de-energised. Itage Operation
If the monitored phase voltage goes below the set under-voltage level
(Umin), the Under LED will light and the Under relay (15-16/18) will de(Umin), the Under LED will light and the Under relay (15-16/18) will de energise after the set delay. During the delay period, the Under LED wi flash.
der LED wage then returns above Umin plus the differential value, the Un-Over-voltgo off and the Under relay will energise again, without dela Over-voltage Operation
If the monitored phase
If the monitored phase voltage goes above the set over-voltage leve (Umax), the Over LED will light and the Over relay (25-26/28) will energise after the set delay. During the delay period, the Over LED will flash. the voltage then falls below Umax minus the differential value, the O relay will de-energise and the Over LED will go off, without delay. Note: Red LED indicates fault condition, not relay status.

Technical parameters	69	139	277
Nominal voltage range (Un):	$57.7-69.3 \mathrm{~V}$	$100-139 \mathrm{~V}$	$220-277 \mathrm{~V}$

Connection

These units monitor a single phase supply and operate relays if the phase voltage goes below or above set levels. Front panel controls al Iow selection of:

- nominal rated voltage,
- differential voltage for operating hysteresis and
- time delay before a trip triggers a relay response.
- LEDs indicate power on and trip status. A relay with two changeover volt-free contacts is fitted.
These instructions contain important safety information. Please read the unit.

Function
VRU1-28

VRO1-28

The time delay and differential triip levels help to prevent relay chatter as the monitored voltage evel varies,
As the relays have changeover contacts, the relay outputs can be invert ed by wiring to the alternative terminals $15-16$ or $25-26$.

The unit obtains its power from the separate auxiliary supply The green LED lights to shows when this supply is present. Under-voltage Mode (Model VRU1-28)
If the monitored phase voltage goes below the set under-voltage level
(Umin), the Under LED will light and relay (15-16 (Umin), the Under LED will light and relay (15-16/18) \& (25-26/28) wil will flash. If the voltage then returns above Umin plus the differential value, the Under LED will go off and the Under relay will energise again, without delay.
Over-voltage Mode (Model VRO1-28)
If the monitored phase voltage goes above the set over-voltage leve
(Unax), the Over LED will ight relay $15-16 / 18$) (Umax), the Over LED will light relay ($15-16 / 18)$ \& $(25-26 / 28$) will energise
after the set delay. During the delay period, the Over LED will flash. If the voltage then falls below Umax minus the differential value, the Ov relay will de-energise and the Over LED will go off, without delay Note; Red LED indicates fault condition, not relay status.

Technical parameters VRSC1-28/69 VRSC1-28/139 VRSC1-28/277 Rated Vg range Un:

	57-69 V	$100-139 \mathrm{~V}$	220-277 V
Overload capacity			
- continuous:	87 V	174 V	346 V
- 10s max:	104 V	209 V	416
Minimum supply Vg Uopen:			
	35 V	60 V	132 V
Burden on supply (Max):	2VA/1.6W	2.7VA 1.7 TW	$4 \mathrm{VA} / 2.2 \mathrm{~W}$
Max. dissipated power			
(Un+terminals):	3 w	3 w	3.5 W
Frequency range:	45-65		
Deadbus on Udbon:	25\% Un		
Deadbus off Udboff:	50\% Un		
Sync Tolerance:	10-30\% Volts		
Relay contacts:	$2 \times$ changeover, volt-free, for general switching operations		
Load capacity - AC:	250 V @ $8 \mathrm{~A}, 2 \mathrm{kVA}$		
Load capacity - DC:	30 V 8 A		
Insulation:			
	$4 \mathrm{kV} / 1 \mathrm{~min}$		
Mechanical endurance:	30×10^{6} operations		
Other Data			
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$		
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$		
Over-voltage category:	,		
Pollution degree:	2		
Environmental protection:	IP40 for front panel, \|P20 for terminals		
Maximum conductor size:	$2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$		
Dimensions:	$90 \times 105 \times 64 \mathrm{~mm}$		
Weight:	2919	335 g	3329

Standards: EN 60255-6, EN 60255-27, eN 61000-6-6, en 61000-6-4
Connection

-This unit compares the voltage, frequency and phase angle of two sup plies and operates a relay according to the synchronicity of the sup
plies. If the two supplies cease to match, the relay operates to provid a control output. The relay output can be used for alarm or control pur poses.

- The unit also provides a dead bus function. If the bus supply fails, the relay operates and the output can be used to switch in an emergenc
generator. LEDS indicate power on relay and ded bus status generator. LEDS indicate power on, relay and dead bus status.
Controls on the front panel set the trip points at which the relays and LEDs operate:
- Degree of synchronicity Ux (\%Volts)
- Nominal voltage (Un)
- Dead bus function on/off

The unit is powered from the generator supply

- These instructions contain important safety information. Please rea them thoroughly before commissioning, operating or maintenance of he unit.

function

The differential triip levels help to prevent relay chatter as the monitored voltage level varies.
As the relays have changeover contacts, the relay outputs can be invert ed by wiring to the alternative terminals 15-16 or 25-26.
The green LED lights shows when the power supply is on.
While the two supplies match in voltage, frequency and phase to the degre While the two supplies match in voltage, frequency and phase to the degre
set by the \% Volts control, the Sync LED lights and the relay is energised. If one supply varies such that they no longer match to that degree, the Sync LED goes off and the relay de-energises.
If the generator voltage falls below the Uon level, the unit ceases to oper
ate, the relay de-energises and the Sync LED Loes off ate, the relay de-energises and the Sync LED goes off.
With Dead Bus On, if the bus voltage falls below the Udbon level, the
relay energises and the Dead Bus LED lights. The relay can be used to relay energises and the Dead Bus LED lights. The relay can be used to
turn on an emergency supply in the event of bus supply failure. The relay will de-energise again and the LED will go off when the bus voltage rises
above the Udboff level. above the Udboff level.
Note: Red LED indicates fault condition, not relay status.

- These units monitor a voltage of 50,75 or 150 mv , e.g. from a standar
current shunt, and operates one of two relays if the ovoltage goes above or below set levels. Front panel controls allow selection of:
- under- and over-voltage trip levels Umax, Umin
nominal rated voltage of 50,75 or 100 mV (Uin)
time delay before a trip triggers a relay response.
LEDs indicate power on and trip status. Two changeover, volt-free r
lays are fitted. lays are fitted.
-Two types are available - a $12-24$ unit powered from $12-24 \mathrm{~V} D \mathrm{and}$ These instructions com $24 \mathrm{~V}-240 \mathrm{~V}$ AC or DC
them thoroughly before comportant safety information. Please read the uni

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies.
As the relays have changevercontacts, the relay outputs can be inver ed by wiring to the alternative terminals $15-16$ or $25-26$.

The green LED lights to shows when the supply is presen. Under normal conditions, with the monitored voltage at nominal level
both red LEDS will be off, the Under relay will be energised and the Over relay will be de-energised. With supply voltage off, both relays will be de energised.

If the monitored voltage goes below the set under-voltage level (Umin the Under LED will light and the Under relay ($15-16 / 18$) will de-energis after the set delay. During the delay period, the Under LED will flash. If the voltage then returns above U min plus the differential value, the Un-Over-voltage Operation
If the monitored voltage goes above the set over-voltage level (Umax) the Over LED will light and the Over relay ($25-26 / 28$) will energise after the set delay. During the delay period, the Over LED will flash.
If the voltage then falls below Umax minus the differential value, the Ov
relay will de-energise and the Over LED will go off, without delay. Note; Red LED indicates fault condition, not relay status.
Device descripion

$\pm=$
Technical parameters VROU3-28/120 VROU3-28/240 VROU3-28/480

Nominal voltage range (Un):			
	100-120V	173-240 V	$380-480 \mathrm{~V}$
Overload capacity			
- continuous:	160 V	312 V	624 V
-10 smax:	180 V	360 V	720 V
Operating frequency:	$45-65 \mathrm{~Hz}$		
Auxiliary Supply Voltage:	$24 \mathrm{~V}-240 \mathrm{VAC/DC}$		
AC Supply frequency:	$45-65 \mathrm{~Hz}$		
Supply voltage tolerance:	$\pm 10 \%$		
Auxiliary Voltage Burden (Max):	$3 \mathrm{VA} / 1.2 \mathrm{~W}$		
Max. dissipated power	2.5 W		
(Un+terminals):			
Over-voltage range (Umax) :	100-125\%Un		
Under-voltage range (Umin):	75-100\%Un		
Differential:	Adjustable $1-15 \%$ Un		
Trip time delay:	Adjustable 0.5 to 10 s		
Relay contacts:	$2 \times$ changeover, volt-free, for general switching operations		
Load capacity - AC:	250 V @ $8 \mathrm{~A}, 2 \mathrm{kVA}$		
Load capacity - DC:	30 V 8 A		
Insulation:			
	$4 \mathrm{kV} / 1 \mathrm{~min}$		
Mechanical endurance:	30×10^{6} operations		
Other Data			
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$		
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$		
Over-voltage category:	1		
Pollution degree:	2		
Environmental protection:	IP40 for front panel, \|P20 for terminals		
Maximum conductor size:	$2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$		
Dimensions:	$90 \times 52 \times 64 \mathrm{~mm}$		
Weight:	138 g		
Standards:	EN 60255-6, EN 60255-27, en 61000-6-2, en 61000-6-4		

EN $60255-6$, en $60255-27$, EN $61000-6-2$, en $61000-6-4$
Connection

These units monitor a 3 -phase 3 -wire supply and operate relays if
phase-phase voltage goes below or above set levels. Front panel con-phase-phase voltage goes below or above set levels. Front panel con

- Under- and Over-volt
- nominal rated voltage,
- differential voltage for operating hysteresis and
- time delay before a trip triggers a relay response.
- LEDS indicate power on and trip status. A relay with two changeover These inontacts is fitted.
These instructions contain important safety information. Please read the unit.

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies.
As the relays have changeover contact, the relay ed by wiring to the alternative terminals $15-16$ or $25-26$. The unit obtains its power from the separate auxiliary supply.
The green LED lights to shows when this supply is present. Under normal conditions, with all three phases at nominal level, both re LEDS will be off, the Under relay will be energised and the Over relay will be de-energised. With mains supply off, both relays will be de-energised
Under-voltage Mode Under-voltage Mode
If the monitored voltage of any phase goes below the set under-voltage energise after the set delay. During the delay yeriod, the Under LED will flash.
If the voltage then returns. above Umin plus the differential value the U. der LED will go off and the Under relay will energise again, without delay. Over-voltage Mode
If the monitored volta
If the monitiored voltage of any phase goes above the set over-voltage
Ievel (Umax), the Over LED will light and the Over relay (25-26/28) will enlevel (Umax), the Over LED will light and the Over relay ($25-26 / 28$) will en ergise after the set delay. During the delay period, the Over Lito will fash
II the voltage then falls below Umax minus the differential value, the Over relay will de-energise and the Over LED will go off, without delay. Note: Red LED indicates fault condition, not relay status.

These units monitor a 3 -phase 3 -wire supply and operate relays if selection of:
Under voltage trip levels

- nominal rated voltage,
differential voltage for operating hysteresis and
time delay before a trip triggers a relay response.
- LEDs indicate power on and trip status. A relay with two changeove volt-free contacts is fitted.
hese instructions contan important safety information. Please read hem thoroughly before commissioning, operation or maintenance of the unit.

Technical parameters VRU3-28/120 VRU3-28/240 VRU3-28/480

	L-L		
Overload capacity			
- continuous:	150 V	300 V	600
-10 s max:	180 V	360 V	20
Operating frequency:	45.65 Hz		
Auxiliary Supply Voltage:	$24 \mathrm{~V}-240 \mathrm{VAC/DC}$		
AC Supply frequency:	$45-65 \mathrm{~Hz}$		
Supply voltage tolerance:	$\pm 10 \%$		
Auxiliary Voltage Burden (Max):	3 VA/ 1.2W		
Max. dissipated power			
(Un+terminals):	2.5 w		
Under-voltage range (Umin):	75-100\%Un		
Differential:	Adjustable $1-15 \% \mathrm{Un}$		
Trip time delay:	Adjustable 0.5 to 10 s		
Relay contacts:	$2 \times$ changeover, volt-free, for general switching operations		
Load capacity - AC:	250 V @ $8 \mathrm{~A}, 2 \mathrm{kVA}$		
Load capacity - DC:	30 V 8 A		
Insulation:			
	$4 \mathrm{kV} / 1 \mathrm{~min}$		
Mechanical endurance:	30×10^{6} operations		
Other Data			
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$		
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$		
Over-voltage category:	II		
Pollution degree:	2		
Environmental protection:	1P40 for front panel, 1P20 for terminals		
Maximum conductor size:	$2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}{ }^{2}$		
Dimensions:	$90 \times 52 \times 64 \mathrm{~mm}$		
Weight:	138 g		
Standards:	EN 6025-6, EN 60255-27, EN 61000-6-2, EN 61000-6-4		

Connection

Device description

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies.
As the relays have changeover contacts, the relay outputs can be invert ed by wiring to the alternative terminals 15-16 or 25-26.

The unit obtains its power from the separate auxiliary supply. The green LED lights to shows when this supply is present.
Under normal conditions, with all three voltages at nominal level, the red LED will be off, the Under relay will be energised. With mains supply of the relay will be de-energised
Under-voltage Operation
If the monitored voltage of any phase goes below the set under-voltage level (Umin), the Under LED will light and the Under relay ($15-16 / 18$ \&
$(25-26 / 28)$ will de-energise after the set delay. During the delay period the Under LED will flash.
If the voltage then returns above Umin plus the differential value, the Un der LED will go off and the Under relay will energise again, without delay Note; Red LED indicates fault condition, not relay status.

Technical parameters VRO3-28/120 VRO3-28/240 VRO3-28/480

Nominal voltage range	100-120V	173-240 V	$380-480 \mathrm{~V}$
(Un):	L-L		
Overload capacity			
- continuous:	150 V	300 V	600 V
-10 max:	180 V	360 V	720 V
Operating frequency:	$45-65 \mathrm{~Hz}$		
Auxiliary Supply Voltage:	$24 \mathrm{~V}-240 \mathrm{VAC/DC}$		
AC Supply frequency:	$45-65 \mathrm{~Hz}$		
Supply voltage tolerance:	$\pm 10 \%$		
Auxiliary Voltage Burden (Max):	3VA/1.2W		
Max. disispated power			
(Un+terminals):	2.5 W		
Over-voltage range (Umax):	100-125\%Un		
Differential:	Adjustable $1-15 \%$ Un		
Trip time delay:	Adjustable 0.5 to 10 s		
Relay contacts:	$2 x$ changeover, volt-free, for general switching operations		
Load capacity - AC:	250 V @8A, 2 kVA		
Load capacity - DC:	30 V 8 A		
Insulation:			
	$4 \mathrm{kV} / 1 \mathrm{~min}$		
Mechanical endurance:	30×10^{6} operations		
Other Data			
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$		
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$		
Over-voltage category:	III		
Pollution degree:	2		
Environmental protection:	IP40 for front panel, \|P20 for terminals		
Maximum conductor size:	$2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$		
Dimensions:	$90 \times 52 \times 64 \mathrm{~mm}$		
Weight:	138 g		
Standards:	EN 60255-6, EN 6025-27, EN 61000-6-2, en 61000-64		

EN $60255-6$, EN $60255-27$, en $61000-6-2$, , EN $61000-6-4$

Connection

These units monitor a 3 -phase 3 -wire supply and operate relays if a
phase-phase voltage goes below set levels. Front panel controls allow election of

- Over voltage trip levels,
- nominal rated voltage,
differential voltage for operating hysteresis and
time delay before a trip triggers a relay response
LEDs indicate power on and trip status. A relay with two changeove volt-free contacts is fitted.
These instructions contain important safety information. Please read
them thoroughly before commissioning, operation or maintenance of the unit.

Function

The time delay and differential triip levels help to prevent relay chatter a the monitored voltage level varies.
As the relays have changeover contacts, the relay outputs can be in-
verted by wiring to the alternative terminals $15-16$ or $25-26$.
The unit obtains its power from the separate auxiliary supply.
The green LED lights to shows when this supply is present.
Over normal conditions, with all three voltages at nominal level, the red LED will be off, the Over relay will be de-energised. With mains supply off the relay will be de-energised.
Over-voltage Mode
If the monitored voltage of any phase goes above the set over-voltage level (Umax), the Over LED will light and the Over relay (15-16/18) \& (25 $26 / 28)$ will energise after the set delay. During the delay period, the
Over LED will flash. Dver LED will flash.
If the voltage then falls below Umax minus the differential value, the Over relay will de-energise and the Over LED will go off, without delay. Note; Red LED indicates fault condition, not relay status.

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies.
As the reays have changeover contacts, the relay outputs can be invert ed by wiring to the alternative terminals $15-16$ or 25-26.

The unit obtains its power from the separate auxiliary supply.
The green LED lights to shows when this supply is present.
Under normal conditions, wh the will be phases at nominal level, both red be de-energised. With mains supply off, both relays the Over relay will Under-voltage Mode
the monitored voltage of level (Umin), the Under LED will light and the Under relay ((15-16/18) will de energise after the set delay. During the delay period, the Under LED will flash. If the voltage then returns above Umin plus the differential value, the Un der LED will go off and the Under relay will energise again, without delay. Over-voltage Mode
level (Umax), the Over LED will light and goes above the set over-voltag ergise after the set delay. During the delay period, the Over LLED will flash. If the voltage then falls below Umax minus the differential value, the Ov
-These units monitor a 3 -phase 4 -wire supply and operate relays if trass-nellow selectectione of ges below or above Under- and Over-volta
nominal rated voltage,
differential voltage for operating hysteresis and
LEDs indicate power on and trip status. A relay with two changeover volt-free contacts is fitted.
These instructions contain important safety information. Please read hem thoroughly before commissioning, operation or maintenance of the unit.
imensions:
Weight:

Connection
relay will de-energise and the Over LED will go off, without dela.

-These units monitor a 3 -phase 4 -wire supply and operate relays if a phase-neutra
selection of:

- Under voltage trip levels
- nominal rated voltage,
- differential voltage for operating hysteresis and
- time delay before a trip triggers a relay response
- LEDS indicate power on and trip status. A relay with two changeover volt-free contacts is fitted.
These instructions contain important safety information. Please read
them thoroughly before commissioning operation or maintenance of the unit.

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies.
As the relays have changeover contacts, the relay outputs can be invert ed by wiring to the alternative terminals $15-16$ or $25-26$.

The unit obtains its power from the separate auxiliary supply
The green LED lights to shows when this supply is present.
Under normal conditions, with all three voltages at nominal level, the red
LED will be off, the Under relay will be energised. With mains supply off LED will be off, the Under relay will be energised. With mains supply off the relay will be de-energised.
Under-voltage Operation
If the monitored voltage of any phase goes below the set under-voltage level (Umin), the Under LED will light and the Under relay ($15-16 / 18$) \&
$(25-26 / 28)$ will de-energise after the set delay. During the delay period, the Under LED will flash.
If the voltage then returns above Umin plus the differential value, the Un
der LED will go off and the Under relay will energise again, without delay. If the voltage then returns above Umin plus the differential value, the UnNote; Red LED indicates fault condition, not relay status.

These units monitor a 3 -phase 4 -wire supply and operate relays if hase-neutral voltage goes below set levels. Front panel controls allow selection of

- Over voltage trip levels,
nominal rated voltage,
differential voltage for operating hysteresis and
time delay before a trip triggers a relay response.
LEDs indicate power on and trip status. A relay with two changeover volt-free contacts is fitted.
hese instructions conta important safety information. Please read hem thoroughly before commissioning, operation or maintenance of the unit.

On tereminitase rang
Differential:
Trip time delay:
-oad capacity - AC:
oad capacity - DC:
Insulation:
Mechanical endurance
ther Data
Operating temperature:
Sorage temperature:
Over-voltage category:
polution degree.
Environmental protection:
Dimensions:
sandard

Connection

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies.
As the relays have changeover contacts, the relay outputs can be invert ed by wiring to the alternative terminals $15-16$ or $25-26$.

The unit obtains its power from the separate auxiliary supply
The green LED lights to shows when this supply is present.
Over normal conditions, with all three voltages at nominal level, the red LED will be off, the Over relay will be de-energised. With mains supply of the relay will be de-energised.

If the monitored voltage of any phase goes above the set over-voltag level (Umax), the Over LED will light and the Over relay $(15-16 / 18) \&(25$ $26 / 28)$ will energise after the set delay. During the delay period, the Over LED will flash.
If the voltage then falls below Umax minus the differential value, the Ove relay will de-energise and the Over LED will go off, without delay. Note; Red LED indicates fault condition, not relay status.

RELAY CONTACTS

Technical parameters	120	240	480
Voltage range (Un Unom):			
viSF3 L-L	100-120 V	173-240 V	$380-480 \mathrm{~V}$
VRSF3NL	$58-69 \mathrm{~V}$	100-139V	$220-277 \mathrm{~V}$
Overload			
- contin.: VRSF3	150 V	300 V	600 V
VRSF3N	87 V	174 V	346 V
- 10 max: VRSF3	180 V	360 V	720 V
VRSF3N	104 V	209 V	416 V
Supply threshold (Umin):	Fixed at 85% of Unom		
Operating frequency (Fn):	$45-65 \mathrm{~Hz}$		
Burden on supply (Max):	$3 \mathrm{VA} / 1.7 \mathrm{~W}$		
Max. dissipated power			
(Un+terminals):	2.5 W	2.5 w	3 w

Load capacity - DC: 1×c/0 250 @ @ $8 \mathrm{~A}, 2 \mathrm{kVA}$ 2×10 Lood capacity - D

Mechanical enduran ce: 30 V 8 A Other Data | Other Data |
| :--- |
| Operating temperature: |
| Storage temperature: |
| Over-voltage category: | Over-voltage categ

Pollution degre: Environmental protection:

Maximum conductor size:

Dimensions:
Standarc

This unit monitors the voltage levels and phase sequence of a three - This unit monitors the voltage evels and phase sequence of alee
phase supply and operates a relay if any phase voltage goes below a
set evel or if the phase sequence (LT, L2, L3) is in incorrect. A front panel control allows selection of minimum voltage level. LEDs indicate power on and trip status.

- Versions are available to suit 3 -wire, 3 ph (VRSF3) and 4 -wire, 3 ph +N
(VRSF3N) supplies of $110 \mathrm{OV}, 220 \mathrm{~V}$ and 430 V nominal (VRSF3N) supplies of $1110 V, 220 V$ and $430 V$ nominal. The 110 V and 230 V
versions occupy a single module width on the versions occupy a single module width on the DIN rail and have a single
relay contact whereas the 430 V version occupies a three-module width relay contact whereas the 43 and
and has two relay contacts.
- These instructions contain important safety information. Please read them thoroughly before commissioning, operating or maintenance of the unit.

Device description

VRSF3-28/480
VRSF3N-28/480

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored parameter fluctuates.
As the relay has changeover contacts, the relay outputs can be inverted by wiring to the alternative terminals 15-16 or 25-26.

The unit obtains its power supply from the supply being monitored. The green LED lights to shows when this supply is present on at least one phase.
Under normal conditions, with the supply voltage at above minimum (threshold Umin) value and the phase sequencing correct ($\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$), the red LED will be off and the relay will be energised.
If the supply voltage falls below the minimum value Umin, the relay deenergises and the red Trip LED lights. Similarly, if the supply phases are connected in the wrong sequence, e.g,
$L 1, L 3, L 2$, the relay de-energises and the red Trip LED lights.
Following a trip, the reset does not occur until the voltage exceeds Umin
plus a differential. Then there is delay before the relay energises again. plus a differential. Then there is a delay before the relay energises again. Note: Red LED indicates foult condition, not relay staus.

Technical parameters	120	240	480
Voltage range Un (Vnom):			
VRBu3 L-L	100-120 V	$173-240 \mathrm{~V}$	$380-480 \mathrm{~V}$
VRBu3n L-N	58.69 V	100-139V	$220-277 \mathrm{~V}$
Overload			
- contin.: VRBU3	150 V	300 V	600 V
VRbu3n	87 V	174 V	346 V
- 10s max: VRBU3	180 V	360 V	720 V
vrbuin	104 V	209 V	416 V
Max. operating voltage Uoff:	187 V	374 V	749 V
Burden on supply (Max):	$3 \mathrm{VA} / 1.7 \mathrm{~W}$		
Max. dissipated power			
(Un + terminals):	2.5W	2.5 W	3 w
Operating frequency:	$45-65 \mathrm{~Hz}$		
Phase imbalance trip leve:	Adjustable 5-15\% Un (Vnom)		
Differential:	Fixed at 1% Un (Vnom)		
Low-voltage trip level (Umin):	Adjustable $50-85 \%$ Un (Vnom)		
Trip delay t :	Adjustable 0.5-10s		
Relay contacts: volt-free, for	$1 \times \mathrm{c} / 0$		
general switching operations:			2×10
Load capacity - AC:	250 V @ $8 \mathrm{~A}, 2 \mathrm{kVA}$		
Load capacity - DC:	30 VAA		
Insulation:			
	$4 \mathrm{kV} / 1 \mathrm{~min}$		
Mechanical endurance:	30×10^{6} operations		
Other Data			
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$		
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$		
Over-voltage category:	III		
Pollution degree:	2		
Environmental protection:			\|P40for friont panel,
	\|P10 for terminals		1 P 20 for terminals
Maximum conductor size:	$2 \times 2.5 \mathrm{~mm}^{2}$ or $1 \times 4 \mathrm{~mm}^{2}$		$2 \times 1.5 \mathrm{~mm}^{2}$ or
			$1 \times 2.5 \mathrm{~mm}^{2}$
Dimensions:	90×17.	mm	$90 \times 52 \times 64 \mathrm{~mm}$
Weight:			123 g
Standards:	EN 60255-6, EN	5-27, en 6100	-6-2, en 61000-6-4

- This unit monitors a 3-phase supply for phase imbalance, low or miss ing phases or incorrect phase sequence and trips a relay if it detect
any anomaly. A front panel control allows selection of minimum voltage level. LEDs indicate power on and trip status.
- Versions are available to suit 3 -wire, 3 ph (VRBU3) and 4 -wire, 3ph+N (VRBUUN) supplies of $110 \mathrm{~V}, 210 \mathrm{~V}$ and 430 V nom inal. The 110 V and 122 V versions occupy a single module width on the DIN rail and have a single relay contact whereas the 430 V version occupies a three-module width and has two relay contacts.
-These instructions contain important safety information. Please read them thoroughly before commissioning, operating or maintenance of the unit.

Connection

VRBU3-18/120(240)

VRBU3-28/480
(VRBU3N-28/480)

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored parameter fluctuates.
As the relay has changeover contacts, the relay outputs can be inverted
by wiring to the alternative terminals $15-16$ or $25-26$. by wiring to the alternative terminals 15-16 or 25-26.

The unit obtains its power supply from the supply being monitored. The green LED lights to shows when this supply is present on at least one phase.
Under normal conditions, with all phases present at nominal levels (above Umin), balanced and connected in the correct sequence ($L 1, L 2$ L3), the red LED will be off and the relay will be energised.
When a trip occurs, the red LED lights and the relay De-energises. A trii
will occur if: will occur if:

- a supply phase falls below a set minimum value Umin or goes above a supply phase falls bel
a maximum limit Uoff.
a phase is lost,
- one phase voltage differs from the others by more than the percent age set by the imbalance trip level control. This trip will be delayed by the time t set by the front panel control, OR
the supply phases are connected in the wrong sequence, e.g. L1, L3, L2
After the cause of a trip has been removed, there will be a short, fixed delay t1 before a reset occurs, the relay energises again and the red LED goes off. Following a low voltage trip, the reset does not occur until the
voltage exceeds Umin plus a differential. The red Trip LED flashes during voltage exceeds Umin plus a differential. The red Trip LED flashes during
any delay period.

 Max. dissipated power (Un + terminals: AC frequency range
Relay contacts:

Load capacity - AC: Load capacity - DC

Mechanical endurance:
Other Data
Other Data
Operating temperature:
Operating temperature: Over-voltage category: Pollution degree: Environmental protection: Dimensions:
$2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$

Standards:
$20 \times 524 \mathrm{~g}$
129 g

Connection

-These units monitor the AC current to a load and operate relays if the current goes below or above a set level. Front panel controls allow se lection of:

- current trip level and
- time delay before a trip triggers a relay response.
- LEDs indicate power on and trip status. A relay with two changeover olt-free contacts is fitted
- Two versions for each type are available
to $1 \mathrm{~A}($ (CROU1-28/1) and 5 A (CROU1-28/5
-The unit can be powered either by a sepa
$240 \mathrm{~V} A C$ or $D C$ or by the monitored supply, if auxiliary supply of 24 --These instructions contain important safety information. Please read them thoroughly before commissioning, operation or maintenance of

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored current level varies. As the relays have changeover contacts, the relay outputs can be inverted by wiring to the alternative
terminals $15-16$ or $25-26$. terminals 15-16 or 25-26.

Under-current Mode
While the monitored current is greater than the set level Imin, the Under relay is
is off.
位 If the current goes below the set level Imin, after the set time delay, the
Under relay de-energises, contacts $15-18$ open and the red Under LED Under relay de-energises, contacts $15-18$ open
lights. During the delay period, the LED flashes.
When the current returns above the set level Imin plus the under-current differential of 1%, the relay changes back without delay and the Under LED goes off.
Over-current Mode
While the monitored current is less than the set level Imax, the Over relay is deenergised (NO contacts $25-26$ are open) and the Over red LED is off If the current goes above the set level Imax, after the set time delay, the
Over relay energises, contacts change over (contacts $25-28$ close) and the Over relay energises, contacts change over (contacts $55-28$ close) and
red Over LED lights. During the delay period, the Over LED flashes. When the current returns below the set level Imax minus the over-cur rent differential of 1%, the relay changes back without delay and the Over LED goes off.
Note; Red LED indicates fault condition, not relay status.

Technical parameters CRU1-18/1 CRO1-18/1 CRU1-18/5 CRO1-18/5 Monitored supply

Connection

CRU1-18
CRO1-18

-These units monitor the AC current to a load and operate relays if th current goes below or above a set level. Front panel controls allow s ection of:
current trip level and
a a relay response.
LEDs indicate power on and trip status. A relay with volt-free changeo
ver contacts is fitted. ver contacts is fitted.

- Two versions for each type are available for monitoring currents of up
to 1 A (CRU1-18-1, CRO1-18/1) and 5 A (CRU1-18/5

Th (CRU1-18-1, CRO1-18/1) and 5 A (CRU1-18/5, CRO1-18/5)
240 V AC or DC or by the monitored supply, if suitable.

- These instructions contain important safety information. Please read them thoroughly before commissioning, operation or maintenance of the unit.
Description

Function
CRU1-18

CRO1-18

The time delay and differential trip levels help to prevent relay chatter as the monitored current level varies. As the relays have changeove contacts, the relay outputs can be inverted by wiring to the alternative terminals 15 -16 or 25-26.
Under-current Mode (Model CRU1-18)
While the monitored current is greater than the set level Imin, the relay is energised (NC contacts 15-16 are open) and the red LED is off. relay de-energises, contacts $15-16$ closel 1 min, after the set time delay, the the delay period, the LED flashes. the delay period, the LED flashes.
ferential of 1%, the relay changes back will I min plus the under-current d Over-current Mode ((Model CROO-18)
While the monitored current is less than the set le
While the monitored current is less than the set level I max, the relay is de energised (NO contacts $15-18$ are open) and the red LED is off. relay energise, contacts change over (contacts $15-18$ close) and the red LED lights. During the delay period, the LED flashes.
When the current returns below the set level Imax minus the over-curren
differential of 10 , the relay changes back with outd Note: Red LED indicates fault condition, not relay status

Technical parameters	CRGF1-18/240	CRGF1-18/24
Supply terminals:	A^{1}, 22	
Monitoring terminals		
(for current shunt):	${ }_{0} 0.2 \mathrm{~m}, \mathrm{G}$ or $2 \mathrm{~m} \Omega$	
External current shunt:		
Supply voltage:	$24-240 \mathrm{VAC} / \mathrm{DC}(45-65 \mathrm{~Hz})$	12-24VDC
Burden on supply (Max):	$3 \mathrm{VA} / 1 \mathrm{w}$	
Max. dissipated power		
(Un + terminals):	2.5 W	
Adjustable current level:	100A, 150A, 200A, 250A, 300A, $450 \mathrm{~A}, 600 \mathrm{~A}, 750 \mathrm{~A}, 800 \mathrm{~A}, 1200 \mathrm{~A}$,	
Overload capacity:	max. input voltage 600 V (in case of shunt failure)	
Indication of exceeding the monitored current:	60\% Imax-red LED TRIP 60%	
Adjustable delay:	0 s/0.15/ $0.25 / 0.45 / 0.6$	ss/ $15 / 2 s / 55 / 10 s^{*}$
Response time:	max.40ms	
Analogue output:	$0-1 \mathrm{~mA}=0 . . .100 \%$ set current values	
Output relay - contact:	$2 \times$ switchable (AgNi) gilded	
AC contact capacity:	$250 \mathrm{~V} / 8 \mathrm{~A}$, max. 2000VA	
DC contact capacity:	30V/8A	
Mechanical service life:	3×106 at rated load	
Other data		
Working temperature:	$-20 .+55^{\circ} \mathrm{C}$	
Storage temperature:	$-30 .+70^{\circ} \mathrm{C}$	
Dielectric strength (power		
supply-contact relay):	$4 \mathrm{kV} / 1 \mathrm{~min}$	
Excess voltage category:	III.	
Contamination degre:	2	
Protection:	IP 40 from the front panel/ /P20 terminals	
Maximum conductor size:	max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$	
Dimension:	$90 \times 52 \times 64 \mathrm{~mm}$	
Weight:	128 g	1259

* If the set current value is exceeded 5 times the time delay is ignored
monitors the dangerous value of the leakage ground current that can cause e.g. undesirable overheating of cables and a subsequent failur
of the device or even dangerous voltage of the grounded device serves as protection of electrical engines, generators, transformers and other devices
- continuous monitoring of the current value using an external curren shunt
- very short response time (< 40ms)
- step-adjustable value of monitored current (in 10 steps)
step-adjustable response delay (in 10 steps)
- indication of exceeding 2 levels of monitored current (60 and 100% Imax) - selection of the value of a shunt on the device panel $-0.2 \mathrm{~m} \Omega$ or $2 \mathrm{~m} \Omega$ - switching the relay mode on the device panel - LATCH ON or OFF
- RESET \& TEST button for the return to the initial state or device tes
- analogue output $0 . . .1 \mathrm{~mA}$ for the control meter
- 2 types according to the value of the supply voltage: $24-240 \mathrm{VAC} / D \mathrm{DC}$ or $12-24 \mathrm{~V}$ DC
-3-module version, mounted onto the DIN rail
Device description

Connection

Function

Function description
After the connection of the supply voltage to the supply terminals (A) A2) the green LED goes on and the output relay is activated. The de vice is monitoring the value of the ground current (AC voltage. from the
shunt at terminals N, G) by means of the external current shunt. If the shunt at terminals N, G) by means of the external current shunt. If the
current value exceeds 60% of the set value Imax the red LED TRIP 60% goes on. When the set value of the Imax current (100\%) is exceeded af ter the elapse of the delay timing the relay is disconnected and the re LED TRIP goes on. The red LED flashes during the timing.
If the set current value is exceeded 5 times the relay is disconnected without delay.
LATCH ON function description
If the current value drops below the set value of 50% Imax both the relay and the red LED TRIP 100% remain unchanged. LED TRIP 60% goes off. The relay returns into the idle state (is activated) by briefly pressing the RESET \& TEST button and the LED TRIP 100% goes off. It can also be reset by short-circuiting the input terminals (N, G).
LATCH OFF function description
If the current value drops below the set value of 50% Imax the relay and both the red LEDs return into the idle state (are activated).
By pressing and holding (for longer than 15) the button the device test
activated - both the relays and the red ISD rest in the case of exceeding the set current value. After releasing the wayto the relay returns to the initial state.

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored parameters fluctuate.
As the relay has changeover contacts, the relay outputs can be inverted by wiring to the alternative terminals 15-16 or 25-26.

The unit obtains its power supply from the supply being monitored. The The unit obtains its power supply from the supply being monitored. The
green LED lights to shows when this supply is present on at least one phase.
Under normal forward current conditions, the red LED will be off and the If the
and the red power $(1 \times \cos \Phi)$ exceeds the set level, the relay energise and the red OVER LED lights after the time delay set by the trip dela control. The red LED flashes during the delay period.
When the reverse power falls below the set level plus the 1% differentia the relay de-energises and the red OVER LED goes of
the relay de-energises and the red OVER LED goes off.

Function

The differential trip levels help to prevent relay chatter as the monitored speed varies.
As the relays have changeover contacts, the relay outputs can be inver As the relays have changeover contacts, the relay outputs can
ed by wiring to the alternative terminals 11-12, 21-22 or $31-32$.

The green LED lights shows when the power supply is on
With the motor running at its normal speed, between Under and Ove speed settings, only the green and amber LEDs will be on and all three relays will be energised.
Crank
The Crank LED lights and the crank relay energises when the engine speed exceeds the Crank setting. This is normally set just above the cranking speed of th
engine has started.
TheLED 20% below the crank speed setting.

Under-speed

The Under LED goes off and the relay energises when the engine speed exceeds Under-speed control setting.
The LED lights and the relay de-energises when the engine speed falls below the Under-speed control setting minus a 2% differential. Over-speed
Normally, the Over relay is energised and the LED is off. If the engine speed exceeds the Over-speed limit setting, the Over relay de-energises and the LED lights. The relay remains de-energised with the LED on un the speed drops below the limit setting minus the 2% differential Sensor disconnection
If the sensor becomes disconnected, the Over LED flashes, the Over relay deenergises, the Crank and Under relays energise and the Crank and lay deenergises, th

Technical parameters	CRMA1-28/24	CRMA1-28/240
Supply voltage:	$12-24 \mathrm{VCC}$	24V-240V AC/DC
Burden on supply (max.):	1 w	$3 \mathrm{VA} / 0.9 \mathrm{~W}$
Max. dissipated power		
(Un+terminals):	2w	
AC Supply frequency:	$45-65 \mathrm{~Hz}$	
Supply voltage tolerance:	$\pm 10 \%$	
Monitored DC current (lin):	0-1, 0-10 and 4-20 mA	
Voltage drop across input:		
	1V max. at 120\% lin	
Over-current range (Imax):	$40-120 \%$ lin	
Under-current range (Imin):	0.80% lin	
Overload capacity		
- continuous:		
-15 max:	$10 \times \operatorname{lin}$	
Differential:	Fixed at 1% lin	
Trip time delay:	Adjustable 0.5 to 10 S	
Relay contacts:	$2 \times$ changeover, volt-free, for general switching operations	
Load capacity - AC:	250V@8A, 2 kVA	
Load capacity- DC:	30 V 8 A	
Insulation:		
	$4 \mathrm{kV} / 1 \mathrm{~min}$	
Mechanical endurance:	30×10^{6} operations	
Other Data		
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$	
Storage temperatur:	-30 to $+70^{\circ} \mathrm{C}$	
Over-voltage category:	III	
Pollution degree:	2	
Environmental protection:	1 P 40 for front panel, P 22 for terminals	
Maximum conductor size:	$2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$	
Dimensions:	$90 \times 52 \times 64 \mathrm{~mm}$	
Weight:	135 g	
Standards:	EN 60255-6, EN 60255-27, EN 61000-6-2, en 61000-6-4	

Connection

- These units monitor a current of $0-1,0-10$ or $4-20 \mathrm{~mA}$, e.g. from a trans ducer, and operates one of two relays if the current goes above or be - under- and over-current trip levols alow selection
- nominal rated current of $0-1,0-10$ or $4-20 \mathrm{~mA}$ (lin)
- time delay before a trip triggers a relay response.
- LEDS indicate power on and trip status. Two changeover, volt-free re lays are fitted.
- Two types are available - a $12-24$ unit powered from $12-24 \mathrm{VCC}$ and $24-240$ unit powered from $24 \mathrm{~V}-240 \mathrm{~V}$ AC or DC
-These instructions contain important safety information. Please read them thoroughly before commissioning, operating or maintenance of the unit.

Device description

Function

The time delay and differential trip levels help to prevent relay chatter as the monitored voltage level varies. As by wiring to the alternative terminals $15-16$ or $25-26$.
ed
The green LED lights to shows when the supply is present
Under normal conditions, with the monitored current at nominal levels, relay will be de-energised. With supply voltage off de-energised. Under-current Operation
If the monitored current goes below the set under-current level ((min) the Under LED will light and the Under relay ($15-16 / 18$) will de-energise after the set delay. During the delay period, the Under LED will flash. If the current then returns above Imin plus the differential value, the Under LED will go off and the Under relay will energise again, without delay Over-current Operation
If the monitored current goes above the set over-current level (Imax), the Over LED will light and the Over relay ($25-26 / 28$) will energise after the set delay. During the delay period, the Over LLD will flash
If current then falls below Imax minus the differential value, the Over Note; Red LED indicates fault condition, not relay status.

Installation contactors VS

Installation contactors with manual control VSM

Accessories

VS120, VS220, VS420, VS425, VS440, VS463 | Installation contactors

Connection

VSM220, VSM425 | Installation contactors with manual control
Loadability of installation contactors

TYPE OF LIGHT OPERATION (W)			Number of lights on one contactor's contact								
		VS120	Vs220	VS420	VS425	VS440	VS463	VSM220	VSM425		
$\begin{aligned} & \text { Incandescent } \\ & \text { lamps } \end{aligned}$	60		0.26	33	33	33	33	65	85	33	33
	100	0.43	20	20	20	20	40	50	20	20	
	200	0.87	10	10	10	10	20	25	10	10	
	500	2.17	3	3	3	3	8	10	3	3	
	1000	4.35	1	1	1	1	4	5	1	1	
Flourescent lamps	18	0.37	22	22	22	24	90	140	22	24	
	24	0.35	22	22	22	24	90	140	22	24	
	36	0.43	17	17	17	20	65	95	17	20	
	58	0.67	14	14	14	17	45	70	14	17	
Flourescent lamps lead-lag circuit	18	0.11	2×30	2×30	2×30	2×40	2×100	2×150	2×30	2×40	
	24	0.14	2×24	2×24	2x24	2×31	2×78	2×118	2×24	2×31	
	36	0.22	2×17	2×17	2×17	2×24	2×65	2×95	2×17	2×24	
	58	0.35	2×10	2×10	2×10	2×14	2×40	2×60	2×10	2×14	
Flourescent lamp parallel correction	18	0.12	7	7	7	8	48	73	7	8	
	24	0.15	7	7	7	8	48	73	7	8	
	36	0.2	7	7	7	8	48	73	7	8	
	58	0.32	4	4	4	5	31	47	4	5	
Flourescent lamp with electronic ballast units (EVG)	1×18	0.09	25	25	25	35	100	140	25	35	
	1×36	0.16	15	15	15	20	52	75	15	20	
	1×58	0.25	14	14	14	19	50	72	14	19	
	2×18	0.17	12	12	12	17	50	70	12	17	
	2×36	0.32	7	7	7	10	26	38	7	10	
	2× 58	0.49	7	7	7	9	25	36	7	9	
High-pressure mercury-vapour lamps uncorrecte	50	0.61	14	14	14	18	38	55	14	18	
	80	0.8	10	10	10	13	29	42	10	13	
	125	1.15	7	7	7	9	20	29	7	9	
	250	2.15	4	4	4	5	10	15	4	5	
	400	3.25	2	2	2	3	7	10	2	3	
	700	5.4	1	1	1	2	4	6	1	2	
	1000	7.5	1	1	1	1	3	4	1	1	
High-pressure mercury-vapou correction	50	0.28	4	4	4	5	31	47	4	5	
	80	0.41	4	4	4	5	27	41	4	5	
	125	0.65	3	3	3	4	22	33	3	4	
	250	1.22	1	1	1	2	12	18	1	2	
	400	1.95	1	1	1	1	9	13	1	1	
	700	3.45	-	-	-		5	7		-	
	1000	4.8	-	-	-	-	4	5	-	-	
Halogen metal uncorrected uncorrect	35	0.53	18	18	18	22	43	60	18	22	
	70	1	10	10	10	12	23	32	10	12	
	150	1.8	5	5	5	7	12	18	5	7	
	250	3	3	3	3	4	7	10	3	4	
	400	3.5	3	3	3	3	6	9	3	3	
	1000	9.5	1	1	1	1	2	3	1	1	
	2000	16.5	-	-	-	-	1	1	-	-	
Halogen metal vapour lamps parallel correction	35	0.25	5	5	5	6	36	50	5	6	
	70	0.45	2	2	2	3	18	25	2	3	
	150	0.75	1	1	1	1	11	15	1	1	
	250	1.5	-	-	-	1	6	9	-	1	
	400	2.5	-	-	-	1	6	8	-	1	
	1000	5.8	-	-	-	-	2	3	-		
	2000	11.5	-	-	-	-	1	2	-	-	
High-pressure sodium-vapour amps uncorrected	150	1.8	5	5	5	6	17	22	5	6	
	250	3	3	3	3	4	10	13	3	4	
	400	4.7	2	2	2	2	6	8	2	2	
	1000	10.3	-	-	-	1	3	3	-	1	
$\begin{aligned} & \text { High-pressure } \\ & \text { sodium-vapour } \\ & \text { lamps paralleel } \end{aligned}$correction	150	0.83	1	1	1	1	11	16	1	,	
	250	1.5	-	-	-	1	6	10	-	1	
	400	2.4	-	-	-	-	4	6	-	-	
	1000	6.3	-	-	-	-	2	3	-	-	
Low-pressure sodium-vapour lamps uncorrected	18	0.35	22	22	22	27	71	90	22	27	
	35	1.5	7	7	7	9	23	30	7	9	
	55	1.5	7	7	7	9	23	30	7	9	
	90	2.4	4	4	4	5	14	19	4	5	
	135	3.5	3	3	3	4	10	13	3	4	
	180	3.3	3	3	3	4	10	13	3	4	
Low-pressuresodium-vapour lamps parala correction	18	0.35	6	6	6	7	44	66	6	7	
	35	0.31	1	1	1	1	11	16	1	1	
	55	0.42	1	1	1	1	11	16	1	1	
	90	0.63	1	1	1	1	8	12	1	1	
	135	0.94	-	-	-	-	4	7	-	-	
	180	1.16	-	-	-	-	5	8	-	-	

EAN codes for VS

vs120
VSI20-01 24V AC/DC: 859518812984 US120-01 230V AC/DC: 859518812310 VS120-10 24V AC/DC: 8595188129367 VS120-10 230V AC/DC: 8595188123112

VS425
AC/DC: 859518812952 S4425-04 48V AC/DC: 8595188129558 S425-04 110V AC/DC: 8595188160032 04 230V AC/DC: 8595188121682 VS425-13 230V AC/DC: 8595188129473 S425-22 24V AC/DC: 859518812954 VS425-22 230V AC/DC: 859518812167
VS425-31 24V AC/DC: 8595188129497 S $4225-3148 \mathrm{~V}$ AC/DC: 859518813789 S425-31 48V AC/DC: 859518813789 VS425-31 230V AC/DC: 8595188121668
S425-40 24V AC/DC: 859518812948 425-40 48V AC/DC: 859518813617 S5425-40 230V AC/DC: 859518812165

EAN codes for VSM

VSM220
VSM220-02 24V AC: 8595188129817 VSM220-02 230V AC: 8595188128100
VSM220-11 24V AC: 8595188129800 VSM220-11 230V AC: 8595188128094

SSM220-20 I2VAC: 8595188138369 M220-20 24V AC: 85951881281 SSM220-20 110VAC: 859518816022 VSM220-20 230V AC: 859518812808

VS220 | VS220-02 24V AC/DC: 859518812938 |
| :--- |
| VS $220-02110 \mathrm{~V}$ AC/DC: 859518813862 | VS220-02 230V AC/DC: 8595188121422 VS220-11 24V AC/DC: 8595188129374 VS220-11 48V AC/DC: 8595188129398 VS220-11 110V AC/DC: 8595188130790

VS220-20 24V AC/DC: 8595188125253 VS220-20 48V AC/DC: 8595188812941 VS220-20 110 V AC/DC: 859518812942 VS220-20 230V AC/DC: 859518812139

VS440

VS440-04 24V AC/DC: 859518812929 VS440-04 110V AC/DC: 859518812930 VS440-04 230V AC/DC: 859518812148 VS440-22 24V AC/DC: 8595188129787 VS440-22 230V AC/DC: 859518812147

VS440-31 24V AC/DC: 8595188129572 VS440-31 230V AC/DC: 8595188121460
VS440-40 24V AC/DC: 8595188129565 VS440-40 110 V AC/DC: 8595188138567 VS440-40 230V AC/DC: 859518812145

VS420
SS420-31 24V AC: 8595188129442 S420-31 110VAC: 859518812946 V540-31 230VAG $\quad 85951881214$

SS420-40 12V AC: $\quad 859518812945$ SS420-4024V AC: $\quad 859518812943$ S4420-40 48VAC: 859518813858 420-40 230V AC: 859518812143

VS463
S463-22 24V AC/DC: 8595188129794 VS463-22 230V AC/DC: 8595188121514

S463-31 24V AC/DC: 85951881295 S463-31 110V AC/DC: 859518813790 24 V ACIC. 859518812958 S5463-40-48V AC/DC: 8595188160612 S463-40 110V AC/DC: 859518814065 SS463-40 230V ACIDC: 8555518812149

VSM425-04 24V AC: 859518812983 VSM425-04 230V AC: 8595188128155
VSM425-22 24V AC: 8595188129336 VSM $425-22230 \mathrm{~V}$ AC: 8595188128148 VSM425-31 24V AC: 8595188129824 VSM $425-31230 \mathrm{VAC}: 859518812813$ VSM425-40 12VAC: $\quad 8595188160049$ VSM425-40 230V AC: 8559518812812

EAN codes for VSK

VSK-11: $\quad 8595188121613$

To ensure correct and perfect function of a device and its safe operation, it is necessary to ensure and observe several main regulations:

1. Device supply
-it is necessary to ensure continuous supply of the device without drops and voltage peaks. It is mainly important for device (e.g. dimmers) where there is synchronization managed by sine wave of the main and fault in the main ca cause unreliable function of the device

2. Protection of the device

- it is necessary to ensure protection of the device by adequate elements of overvoltage protection - by fuses, by surge arrestors

3. Elimination of disturbances on input circuit
it is recommended to eliminate disturbances on control inputs of devices by suitable elements (R-C elements) and thus minimize creation of inductive oltage on incoming wires
(e.g. connected glow lamps)
4. Opereting conditions
5. Opereting conditions to assure the granted life and correct functions of device, there is not recommended to leave the device in extreme conditions that could negative way influence the correct device functions - permanent temperature influence over $70^{\circ} \mathrm{C}$, aggressive exhalations, chemicals, high relative humadity over 95%, high electromagnetic field or microwave radiation
-all mentioned products fulfill the EMC requirements in accordance with EU Directive 89/336/EEC. Notwithstanding it is necessary to pay attention when devices are connected to circuit with electrical appliances that produce electromagnetic interference (contactors, motors), and pay attention to close power cables. It is recommended that device connecting cables (supply and control inputs) are possibly short and go separately from power cables. In case the device is connected to circuit with contactors or motors, it is necessary to protect the device with appropriate extern protection components - RC members, varistors or surge voltage protector.
6. Device handling and using

- input terminals do not fill-in with high power (for serial terminals $\max 0.5 \mathrm{~N} / \mathrm{m}$), do not give excessive pressure to carrier terminal parts to avoid demage of - input terminals do not fill-in
inner device construction
- protect the device before falls and excessive vibrations that could demage relays contacts
-do not overload input relay's contacts, especially when using loads with other category then AC1
-when at switching of big loads the relay contacts get sealed it is necessary to use inserted contactor or power relay tuned to required load for given application

Description of used protection elements in device
All time and monitoring relays from our assortment are equipped with protective elements (varistors) against possible overvoltage in supply main. Limit voltage of used varistors is 275 V . At short-time overvoltage in supply main varistor decrease its leak resistor and accumulate arosen overvoltage. When this overvoltage behave as short-time peak, varistor is able to react and protect the device against negative influences. As other protection elements there are used transils and zener diodes that eliminate overvoltage impulses in supply and input circuits of device (e.g. when switching inductive loads). In case of swit-
ching inductive loads it is recommended to separate a supply of powerelement (motors, contactors etc.) from supply of measuring and control device inputs.

On the charts bellow you can see oscilographic running of disconnecting of loads (contactors) and reaction of protective elements to arosen voltage pikes.

Process of disconnection of contactor with coil on $230 \mathrm{~V} / \mathrm{AC}$ without R -C member
(20)

Process of disconnection of contactor with coil

Process of disconnection of contactor with coil and limited varistor on 230V/AC

PRODUCT	SOU-2	RHV-1; SOU-3; TEV-4	CRM-4; CRM-42; HRH-7 MR-41; MR-42; SHT-1; SHT-1/2; SHT-3; SHT-3/2; SHT-4; SHT-6; SMR-B; SOU-1; RHT-1; TER-3A; TER-3B; TER-3C; TER-3D; TER-3E; TER-3F; TER-3G;TER-3H;VS116B/230; VS116K;VS116U;VS3 VS316/230V		HRH-6	CRM-2T; CRM-81; CRM-91H; CRM-9iHE; ARH-1; HRN-33; HRN-41; HRN-42; HRN-43; PRM-9 9 H; SJR-2; $;$ TER-4; $;$ TEV- $1 ;$ TEV-2; TEV-3
CONTACT TYPE OF LOAD	Material of contact AgSnO_{2} contact 8 A	Material of contact AgSnO_{2} contact 12 ${ }^{2}$	Material of contact AgSOO_{2} contact 16A	Material of contact AgNi contact 8A	Material of contact AgNi contact 10A	Material of contact AgNi
$\underset{\mathrm{AC1}}{\underset{\cos \varphi 20.95}{ }}$	250V/8A	250V/12A	250V / 16A	250V/8A	250V / 10A	250V / 16A
${ }_{A C 2}-M-$	250V/5A	250V / 3.7A	250V/5A	250V/3A	250V/3A	250V / 5A
$\mathrm{ACB}^{-\mathrm{M}-}$	250V /4A	250V/2.2A	250V/3A	250V/2A	250V/2A	250V/3A
$\underset{\substack{\text { AC5ampensated } \\ \text { uncompen }}}{\substack{2}}$	x	230V / 2.2A (510VA)	$230 \mathrm{~V} / 3 \mathrm{~A}$ (690VA)	$230 \mathrm{~V} / 1.5 \mathrm{~A}$ (345VA)	230V / 2 A (460VA)	$230 \mathrm{~V} / 3 \mathrm{~A}$ (690VA)
	x	$230 \mathrm{~V} / 2.2 \mathrm{~A}$ (510VA) till max output C=14UF	$230 \mathrm{~V} / 3 \mathrm{~A}$ (690VA) till max output C=14UF	x	x	x
	250W	1120 W	1000W	300W	500W	800W
${\underset{A C 6 a}{ } 3 \mid \xi}^{3}$	250V /4A	x	x	x	x	x
Am AC7b	250V /1A	250V / 2.2 A	250V/3A	250V /1A	250V/2A	250V/3A
\square	250V /1A	250V / 7.5A	x	250V /1A	250V / 6A	250V / 10A
WC13	x	250V/4.5A	x	x	250V / 3.8A	250V / 6A
$\overline{\mathrm{AC} 14} \overline{\mathrm{~m}}$	250V/4A	250V/4.5A	250V/6A	$250 \mathrm{~V} / 3 \mathrm{~A}$	250V / 3.8A	250V / 6A
$\underset{A_{A C 15}}{\overline{m b-\ell_{1}}}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	250V/4.5A	250V / 6A	250V/3A	250V/3.8A	250V/6A
\square	30V/8A	24V/12A	24V/10A	24V/8A	24V/10A	24V / 16A
DC3-	30V/3A	24V/4.5A	24V/3A	24V/3A	24V/3.8A	24V/6A
$\mathrm{DCS}^{-\mathrm{M}-}$	30V/2A	24V/3A	24V/2A	24V/2A	24V/2.5A	24V/4A
\longrightarrow	30V/8A	24V/12A	24V/6A	24V/8A	24V/10A	24V / 16A
$\underset{\text { DC13 }}{\bar{m}}$	30V/2A	24V/1.5A	24V/2A	24V/2A	24V/1.3A	24V/2A
$\overline{\mathrm{DC} 14}$	x	24V/1.5A	x	x	24V/1.3A	24V/2A

Product loadability

Problematic choice of suitable relay contact for a particular load switched with a product is described below, Mostly we experience problems with incorrect choice of load (mea ning incorrect relay for a particular load) which results in permanent switching of contact (sealing) or damage on relay contact- which then results in malfunction.
What load can you use? Detailed types of load according to standard EN 60947 are described in charts below - categories of use.

Category of use	Typical use	EN
AC current, $\cos \varphi=\mathrm{P} / \mathrm{S}(-)$		
AC-1	Non-inductive or slightly inductive load, resistance furnace Includes all appliances supplied by AC current with power factor $(\cos \varphi) \geq 0.95$ Examples of usage: resistance furnace, industrial loads	60947-4
AC-2	Motors with slip-ring armature, switching off	60947
AC-3	Motors with short-circuit armature, motor switching when in operation This category applies to switching off motors with short-circuit armature while in operation. While switching, contactor switches current which is 5 up to 7 times rated current of motor.	60947-4
AC-4	Electro-motors with short-iricuit armature: start up, braking by backset, changeover	60947
AC-5a	Switching of electrical gas-filled lights, fluorescent lights	60947-4
AC-5b	El. bulb switching Enables low contact loading due to resistance of cold fiber is many times smaller that the one of hot fiber	60947-4
AC-6a	Switching of transformers	60947-4
AC-6b	Switching of capacitors	60947-4
AC-7a	Switching low inductive loads of home appliances and similar applications	60947
AC-7b	Load of motors for home appliances	60947
AC-8a	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-8b	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-12	Switching of semiconductor loads with separation transformers	60947-5
AC-13	Switching of semiconductor loads with separation transformers	60947-5-1
AC-14	Switching of low electro-magnetic loads (max.72 VA)	60947-5-1
AC-15	Management of alternating electro-magnetic loads This category applies to switching inductive loads with input for closed electro-magnetic circuit higher than 72 VA Use: switching coils of contactors	60947-5
AC-20	Connecting and disconnecting in unloaded states	60947-3
AC-21	Switching resistive loads, including low loading	60947-3
AC-22	Switching of mixed resistive and inductive loads, including low overloading	60947-3
AC-23	Switching of motor loads or other high inductive loads	60947-3
AC-53a	Switching of motors with short-circuit armature with semiconductor contactors	60947

DC-1	Non-inductive or low inductive load, resistive furnaces	60947-4
DC-3	Shunt motors: start-up, braking by backset, reversion, resistive braking	60947-4-1
DC-5	Series motor: start-up, braking by backset, reversion, resistive braking	60947-4-1
DC-6	Non-inductive or low inductive loads, resistive furnaces - el. bulbs	60947-4-1
DC-12	Management of resistive loads and fixed loads with insulation by opto-electric element	60947-5-1
DC-13	Switching of electromagnets	60947-5-1
DC-14	Switching of electromagnetic loads in circuits with liniting resistor	60947-5-1
DC-20a(b)	Switching and breaking without loada: frequent swiithing , b: occasional switching)	60947-3
DC-21a(b)	Switching ohmic loads including limiting overloading (a: frequent switching, b: occasional switching)	60947-3
DC-22a(b)	Switching of compound ohmic and inductive loads including limited overloads (e.g. shunt motors) (a: frequent switching, b: random switching)	60947-3
DC-23	Switching of highly inductive loads (e.g. series motors)	60947-3

How can you distinguish for which load is our product (relay) designated?
Our company record this information on a products and also in our catalogu

It is imppon incy of parameters of switched device. Manufacturer of relays records always guaranteed parameters in ideal conditions which are done by a norm (temperature, pressure.,

Basic types of materials which are used for production of contacts for high-performance relay are:
a) A) ACd s sitatale for swith
b
b) AgNi -designated for switching resistive loads, good quality switching and conducting (contact doesn't oxidate) small currents/voltages, its not designated for surge currents a) Ags loads with inductive component. - suitable forswitching loads with inductive component, not suitable for switching small currents/voltages, it is more resistive to surge currents, suitable for
DC voltage swwitching, less suitable for switching loads of hmmictype.

Electromagnetic compatability (EMC) is a new scientific field which was founded in the 60 last century. I.
research.
Electromagnetic compatability EMC is defined as an ability of a device, system or a machine to show the correct operation even in an environment in which there are other sources of electroment by its own "electromagnetic action" and not to radiate signals that would disturb other devices. It is an indicator of good quality and reliability. Breach of such EMC requirements may cause several damages with catastrophical consequences.
When testing EMC of a device or system (technical and biological), it is based on so called "fundamental chain of EMC" shown in the picture. This chain shows a system problematic of EMC and we inspect all three components.

Test SURGE

For guarantee the immunity of our devices against to electromagnetic disturbance we are doing EMC tests and according results we are still innovating our product to be accoding the EMC norms with reserv
The most importaztest is immunity against gust of high-energy voltage and current impulse (SURGE), what is made according the norm IEC 61000-4-5. By his our products are controlled in case of short time pulse, what is apllicated as to input as to output circuits of divices, to switching inputs, sensing inputs,
etc. Our produts pass all criterias and are fully cotitiver Test SURGE is used in practice mainly for 1-phase devices with take-off current to 16 A. It makes use of voltage impulse $1,2 / 50 \mathrm{~ms}$ no load and current impulse $8 / 20 \mathrm{~ms}$ for short time. Size of used voltage impulse is $0.5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV , size of used current impulse is 2 kA on 4 kV with choise of changing polarity. For testing by impulses is as coup mode specify capacitive coupling.

Test BURST

Other very important test is test immunity against quick shor--lived effect (couple of impulses- BURST), which dissimulated influence if industry disturbance. Disturbance signal is injected to supply circuits and communication cabling. Coupling is made by 1 -phase capacitive circuit or coupling capacitive ribband to supply, signalling or data convection of tested device. Size of testing impulses is $0.5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV in possitive and negative polarity. Repeat frequence
is 2.5 kHz , or 5 kHz . Period of testing $0-6$ minut by steps for 0.1 s .

Test POWERFAI

For right function of products in industry is important POWERFAIL test - simulation of decreasing and failure of supply voltage. It is made according to the
Short-time supply decreasing are random decreasing of supply voltage, which are more than 10-15\% of its nominal size and have short time existing 0.5-50 periodes of basic frequency 50 Hz
Short breaks of voltage are short time decreasing over 100%. Mentioned changes of supply circuit voltage are made in practise by disturbance in mains (high voltage, Iow voltage) and breaks on load of the main.

Test of emc emissions
Electronic devices must be designed not to be a source of oversize electric or electromagnetic disturbances in its surroundings. Test is executed according to standard EN 55022 . Emissions are measured by wires or by air.

Test of electromagnetic high-frequency field and HF signal coming from the main

The purpose of this test is to verify immunity of the device against electromagnetic fields that are created by radio transmitters or by any other device which
transmits electromanetic energy by uninterrupted waves (walkie-telkies radio and TV thansmiters) transmis ectromagnetic
Test is carried out against disturbances in the main and emissions. We apply testing level 3 which for HF field means intensity of field $10 \mathrm{~V} / \mathrm{m}$ and for HF signal it is voltage level 10 V .

Test of electrostatic discharge

It is a test of resistance against discharges of electrostatic energy caused by servicing or by surrounding objects. Such discharge can damage a device or its components.
Test is carried out by direct or indirect application of discharges to a tested device. Test is carried out according to a standard EN $61000-4-2$. Direct influence of discharges is targeted into such places and surfaces that are accessible to servicing during common use. Indirect influence of discharge is done by horizontal The device is treated by at

Company ELKO EP has its own test laboratory in which it carries out pre-certification for conditions that must be met by each of our products. Thus customers gets not only a product of a high quality, which is ensured by many years of experience in the field of switching relays, but also a product which can operate

EMC - parameters

Product				PRODUCT				PRoduct			
Time relays				Power supplies				HRH-4/230V	3		55022/B
CRM-81/230V	3	3	55022/A	PS-10-12; PS-10-24	3	3	55022/B	HRH-4/24V	3	3	55022/B
CRM-81J/UNI	3	3	55022/A	PS-30-12; PS-30-24	3	3	55022/B	HRH-6/AC	3	3	61000-6-3
CRM-83/230V	3	3	55022/A	PS-100-12; PS-100-24	3	3	55022/B	HRH-6/DC	3	-	
CRM-83/JUNI	3	3	55022/A	PS-30R	3	3	55022/A/B	cos-2	3	3	55022/A
CRM-82TO	3	3	55022/A	ZSR-30	3	3	61000-6-3	Thermostats			
SJR-2/230V	3	3	55022/B	ZNP-10-12V	-	3	55022/B	TER-3A	3	3	55022/B
SJR-2/UNI	3	3	55022/A	ZNP-10-24V	-	3	55022/B	TER-3B	3	3	61000-6-3
CRM-TT/230V	3	3	55022/B	Other modular devi				TER-3C	3	3	55022/B
CRM-2TUNI	3	3	55022/A	SOU-1/230V	3	3	61000-6-3	TER-3D	3	3	61000-6-3
CRM-2H/230V	3	3	55022/A	SOU-1/UNI	3	2	55022/A	TER-3E	3	3	55022/B
CRM-2H/UNI	3	3	55022/A	Sou-2	3	3	61000-6-3	TER-3F	3	3	55022/B
CRM-91HEUUNI	3	3	55022/A	Sou-3	3	3	55022/B	TER-3G	3	3	55022/B
CRM-2HE/UNI	3	3	55022/A	MR-41/230V	3	3	55022/A	TER-3H	3	3	55022/B
CRM-91H/230V	3	3	55022/B	Mr-41/UN	3	3	55022/A	TER-4/230V	3	3	55022/B
CRM-91H/UNI	3	3	55022/A	MR-42/230V	3	3	55022/A	TER-4/24V	3	3	-
CRM-93H/230V	3	3	55022/B	MR-42/UNI	3	3	55022/A	TER-9/230V	3	3	55022/B
CRM-93H/UNI	3	3	55022/A	Monitoring relays				TER-9/24V	3	3	-
CRM-9S	-	3	61000-6-3	HRN-41	3	3	61000-6-3	TER-7	3	3	55022/B
CRM-61	3	2	61000-6-3	HRN-42	3	3	61000-6-3	ATR; ATC; ATF	2	2	55022/B
SHT-1	3	3	55022/A	HRN-33	3	3	55022/A	DTR; DTC; DTF	2	2	55022/B
SHT-1/2	3	3	55022/A	HRN-34	3	-		TEV-1	3	3	55022/B
SHT-3	3	3	55022/A	HRN-35	3	3	55022/A	TEV-2	3	3	55022/B
SHT-3/2	3	3	55022/A	HRN-37	3	3	55022/A	TEV-3	3	3	55022/B
PDR-2A/230V	2	3	61000-6-3	HRN-63	3	3	55022/A	TEV-4	3	3	55022/B
PDR-2A/UNI	3	3	61000-6-3	HRN-64	3	-	-	RHT-1	3	3	55022/B
PDR-28/230V	2	3	61000-6-3	HRN-67	.	-	-	RHV-1	3	3	55022/B
PDR-2B/UNI	3	3	61000-6-3	HRN-55	3	3	55022/B				
PRM-91H/8	3	3	55022/B	HRN-55N	3	3	55022/B				
PRM-91H/11	3	3	55022/B	HRN-57	3	3	55022/B				
PRM-92H	2	3	55022/A	HRN-57N	3	3	55022/B				
PRM-2H	2	3	55022/A	HRN-54	3	3	55022/B				
SMR-T	2	2	61000-6-3	HRN-54N	3	3	55022/B				
SMR-H	2	2	55022/A	HRN-56/120	3	3	55022/B				
SMR-B	2	2	61000-6-3	HRN-56/208	3	3	55022/B				
CRM-4	3	3	55022/B	HRN-56/240	3	3	55022/B				
CRM-42	${ }^{3}$	3	55022/A	HRN-56/400	3	3	55022/B				
Power and auxiliary relays				HRN-56/480	3	3	55022/A				
VS116K	3	3	55022/A	HRN-56/575	3	3	55022/A				
VS116U	3	2	55022/A	HRN-43	3	3	55022/A				
vS308k230V	3	3	61000-6-3	HRN-43N	3	3	55022/A				
VS308K/UNI	3	2	55022/B	PR1-32	3	3	61000-6-3				
VS308U	3	2	55022/A	PR-51/1	3	3	61000-6-3				
V5316/24V	3	-	-	PR-51/2	3	3	61000-6-3				
VS316/230V	3	3	55022/B	PRL-51/5	3	3	61000-6-3				
Dimmers				PRR-51/8	3	3	61000-6-3				
DIM-2	2	2	61000-6-3	PR1-51/16	3	3	61000-6-3				
DIM-5	2	2	61000-6-3	PR1-510.5	3	-	-				
DIM-14	2	2	55022/B	PR1-52	3	3	55022/A				
DIM-6	2	2	55014-1	PR-41	3	3	61000-6-3				
DIM6-3M-P	2	2	55014-1	PR1-42	3	3	61000-6-3				
DIM-15	2	2	55014-1	HRH-1/230V	3	3	55022/A				
SMR-S	2	2	55022/A	HRH-1/24V	3	3	55022/A				
SMR-U	2	2	55022/B	HRH-1/110V	3	3	55022/A				
LIC-1	2	2	550015	HRH-5	3	3	61000-6-3				

As is our good tradition, we have always been seeking for a maximum universality of our products. We have successfully developed a dimmer DIM-15 and
SMR-M, and because the LED lighting dimming - as well as dimming of energy saving lamps - is a relatively new area and there are not so many manufacturers SMR-M, and because the LED lighting dimming - as well as dimming of energy saving lamps - is a relatively new area and there are not so many manufacturers
who produce dimmable energy saving resources, we will gradually test and expand the chart below. We welcome your feedback and cooperation in addressing us your comments and new types.

Type	Light sources ELKO Lighting	Socket	Dimmable	The maximum number of units can be connected to dimmers				
				SMR-M	LIC-1	DIM-14	DIM-15	DIM-6
(DLB-E27-806-2K7	E27	yes	11	21	36	21	145
\%	DLB-E27-806-5K	E27	yes	11	21	36	21	145
\%	DLLL-GU10-350-3k	GU10	yes	25	45	74	45	300
\%	LSL-GU10-350-3k	GU10	yes	13	25	40	25	165
\%	LSL-GU10-350-5K	GU10	yes	13	25	40	25	165

Please note:
May lead to different results based on the state of network cable length and other factors.
The products were tested in test laboratories ELKO EPP, and therefore the company assumes no responsibility for any imitation test environment.

Support of project design

Our aim is to give a complete care to all electro project designe

Our activities:

Our products are a part of the following programs:
Project programs

Training

In case our products attracted your interest, do not hesitate to contact us at elko@elkoep.com or see our websites wwwelkoen.com for more information
Technical support
in case of any questions regarding use of our products for a particular project, contact us at support@elkoep.com.
Note.: logos, names, software, hardware are protected by owner's rights.

Packing of plug - in relay - 2 pcs

Packing of 2-MODULE relay - 1 pc

Packing of 3-MODULE relay - 1 pc

Packing of 1-MODULE relay - 1 pc

1-MODULE DESIGN

front panels 1-MODULE, examples of use:

MR-42	Uss	HRN-55	HRN-57	HRN-56	MPS-1	PRI-51	HRH-5	TER-7
$\bigcirc \bigcirc$		$\bigcirc 0$	$\bigcirc 0$	$\bigcirc \bigcirc$	\bigcirc	$\bigcirc 0$	00	$\bigcirc \bigcirc$
						\bigcirc	\bigcirc	圖
\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	
			\bigcirc		\bigcirc		\bigcirc	\bigcirc

2-MODULE DESIGN

front panels 3-MODULE examples of use:

HRH-8

\circ	
	$\boxed{\square}$
\circ	\bigcirc
\circ	\bigcirc
\circ	\bigcirc

ZSR-30

HRF-10

\circ		\bigcirc
\circ	\bigcirc	\bigcirc
\circ	\bigcirc	\bigcirc

PS-30-12 \bigcirc

SMR-T, SMR-H, SMT-K

VS116/B

ATR, ATF, ATC

RHV-1, TEV-4

SMR-M

SMR-B

PSB

DTR, DTF, DTC

front panels 6 -MODULE, examples of use:
DIM-6

\circ	
0	\bigcirc
0	
0	
0	
0	
0	\bigcirc
0	

\square

PRI-53

0		
\circ	\bigcirc	\bigcirc
	\bigcirc	

\square

PRM-91H/11, PRM-91H/8, PRM-92H, PRM-2H

Socket for PRM-91H/11, PRM-92H, PRM-2H, 750L

PRM-2
ES-11

Socket for 782L

Unit: 00

Multifunction time relay CRM-91H,CRM-93H
-for electric appliances, where is necessary to change the exact timing - controlling of the illumination, heating, motors, machines, ventilators, contactors...

Multifunction time relay with contactless output CRM-9S using for warning illuminatin on the road, flashers, cyclers, often switched
systems... systems ...

Singlefunction time relay CRM-81J
-time switch, using for run down the pump after switch off the heating, switching of ventilators ...

Multifunction time relay with exterral potentiometer CRM-91 HE time adjusting via external operating unit, operating on panel, switchboard doors

Multifunction time relay CRM-61

- for electronic appliances, light control, heating, motors, fans....

$\frac{\text { Time relay plug-in type PRM-91H, PRM-92H }}{\text { - serves to control light signall ization, heating }}$
-serves to control light signallization, heating, motor and fan control etc.

Doublestage delay unit SJR-2

- for sequential load switching, electric furnaces, heaters....

$\frac{\text { Staircase switch CRM-4 }}{\text { - staircase automatic ss }}$
staircase automatic systems, ventilators switching, for multiplace operating illumination on the staircases and halls.

$\frac{\text { Delay OFF without supply voltage CRM-82TO }}{\text { - delayed wack-up switch off at current failur }}$
delay back-up switch off at current failure (emergency illumination - delayed back-up switch
emergency respirator)

Asymmetric cycler CRM-2H
regular rooms ventilation, cyclic humidity exhaustion, illumination controlling, circulation pump, flash, warning appliances, regular pump down, regular irrigation via electromagnetic valve

$\frac{\text { Progammable staircase automat with signalling before switch off CRM-42 }}{- \text { starcais illumination operation }}$ starcaise illumination operation
on-coming switch off signalling (flash = comfort + safety together)

Digital time switch SHT-1/2
-for controlling of all appliances that depend on real time, appliances could be controlled in regular cycles, or according to adjusted program (blocking of main door out of working hours or night
-in combination with other devices, controlling could be combinated (rooms ventilation, irrigation controlling, bell at school or in church...)

Programmable digital relay PDR-2

- illumination, ventilators, contactors controlling, controlling of interlocking plans, system of time abate and blocking (billiards, pin-balls....), away control via external buttons

Twilight switch SOU-1

- outdoor illumination switching (garden illumination), flash, shop-window, hall and office illumination (switch off in desired light level, controlling of intensity)

Delay on star/delta CRM-2T
otor starting more than 3 kW , electronic switchover from mode start to mode operation with device CRM-2T, what assures exact timing

Modular contactor VS120, VS220, VS420, V5425

- to switch circuits for supply and control of heating, lights, air-conditioning Switches loads AC-1, AC-3, AC-7a, AC-7b, AC-15.

$\frac{\text { Auxilary plug-in relays } 750 \mathrm{~L}, 782 \mathrm{~L}}{- \text { to switch bigger output (load) }}$

Modular contactors VS440, V5463
to switch supply and control circuits for heating, air-conditioning and other el. devices, switching 3-phase motors
Switches loads A-1, AC-3, AC-7a, AC-7b, and AC-15

Digital time switch SHT-1, SHT-1/2
or controlling of all appliances that depend on real time, in daily or weekly mode

Staircase automat with dimming DIM-2

- step by step (fluent) dim up, adjusted time is ON and fluent dim down (e.e. possible to adjust permanent shine to min. brightness everlasting light) lock of flats (entry, halls, staircases), garden lighting

Memory relay MR-41, MR-42
-because of 2 -wire paraliel buttons connection save money, place and time
during the installation

- light switching hall, stai
-light switching, hall, staircase, big rooms, controlling systems, automation

Switching power supply PS-R

- power supply of any devices and appliances via safe voltage with full
galvanically separated from mains
- power supply of driving systems int
- power supply of driving systems, interlocking plants and use in
measurement and contr

Controlled dimmer DIM-5
short press ON/OFF, long press - brightness regulation, is in memory. ses activate memory

Power relays VS
witching of higher load tha is capa assistant light controlling, signalling, boilers,.

Controlling and signalling units USS request

- switching
witching and signalling in switchboard, controlling centre, automation.

$\frac{\text { Monitoring Voltage relay HRN-35 }}{\text { - } \text { start of back-up supply in case of }}$
-start of back-up supply in case of failure

Monitoring voltage relay HRN-34 - load disconnected when voltage declines or battery is discharged

$\frac{\text { Monitoring current relay PRI-51, PR1-32 }}{- \text { current-limiting relay }}$
-current-limiting relay (on one branch two appliances, which never work together), controlling systems, motors, heating, current indication, controlling of 1-phase motor run down, during the installation of main housing switchboard could be controlled via eye, if the cooker is not switched

- monitors power-factor in 3-phase mains / unloading of motors, pumps, lift systems

$\frac{\text { Relay monitoring sequence and failure of phases HRN-55, HRN-55N }}{\text { - monitoring of proper motor rotation, electric drive, etc. }}$ - monitoring of proper motor rotation, electric drive, etc.

Monitoring voltage relay for under/vervoltage for 3-phase mains HRN-54 - confor

Monitoring current relay PRI-4
monitoring over-/-underload (machine, motor ...)
monitoring consumption, diagnostics of distant appliance (short circuit, increased consump....)

-regulation of voltage from generator, water el. plants, 3 -phase control in - regulation
the main

$\frac{\text { Relay monitoring over-/undervoltage in } 3 \text {-phase mains HRN- } 54 \mathrm{~N}}{\text { - monitoring voltage in switchboard protection of appliances }}$ - monitoring voltage in switchboard, protection of appliances

$\frac{\text { Level switch HRH-8 }}{- \text { - }}$

$\frac{\text { Thermostat TER-3 with external sensor }}{\text {-control of temperature of floor heat }}$ - control of temperature of floor heating

Thermostat for thermal protection of motors TER-7
protection of motors against thermal overload

Level switch HRH-5
monitoring level in well, sump, tanks, silo..

2 stage thermostat TER-4 with 2 external sensors

$\frac{\text { Multifunction digital thermostaa TER-9 }}{\text {-complex control of heating and wate }}$
complex control of heating and water heating in a house

Others just resell
HOWEVER, WE DEVELOP AND MANUFACTURE PRODUCTS OURSELVES!

ELKO EP, s.r.o.
Palackeho 49376901 Holesov, Vsetuly | Czech Republic
phone: +420 573514221 | fax: +420 573514227 |elko@elkoep.com | www.elkoep.com
Published: 05/2019 | Modifications or amendments reserved | © Copyright ELKO EP, s.r.o. | 2st edition

[^0]:

[^1]:

