

Technical parameters RFSAI-61B/230V RFSAI-61B/120V RFSAI-61B/24V

Supply voltage:	$\begin{gathered} 230 \mathrm{VAC} / \\ 50-60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 120 \mathrm{~V} \mathrm{AC} \mathrm{/} \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 12-24 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC} \\ 50-60 \mathrm{~Hz} \end{gathered}$
Apparent power:	$7 \mathrm{VA} / \cos \varphi=0.1$	$7 \mathrm{VA} / \cos \varphi=0.1$	-
Dissipated power:	0.7 W	0.7 W	0.7 W
Supply voltage tolerance:		+10\%; -15 \%	
Output			
Number of contacts:	$1 \times$ switching (AgSnO_{2})		
Rated current:	$16 \mathrm{~A} / \mathrm{AC1}$		
Switching power:	4000 VA / AC1, 384 W / DC		
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$		
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{~V}$ DC		
Min. switching power DC:	500 mW		
Mechanical service life:	3×10^{7}		
Electrical service life (AC1):	0.7×10^{5}		
Controlling			
RF command from the transmitter:	866 MHz , 868 MHz , 916 MHz		
Manual control:	button PROG (ON/OFF)		
External button:	max. 12 m cable *		
Range in open space:	up to 200 m		
Other data			
Voltage of open contact:	3 V		
Resist. of connection for closed contact:	$<1 \mathrm{k} \Omega$		
Resist. of connection for open contact:	$>10 \mathrm{k} \Omega$		
Galvanic isolation of input:	$\text { no } \triangle$		
Operating temperature:	15 up to $+50^{\circ} \mathrm{C}$		
Working position:	any		
Mounting:	free at lead-in wires		
Protection:	IP30		
Overvoltage category:	III.		
Contamination degree:	2		
Terminals (CY wire, Cross-section):	$2 \times 0.75 \mathrm{~mm}^{2}, 2 \times 2.5 \mathrm{~mm}^{2}$		
Terminal length:	90 mm		
Dimensions:	$49 \times 49 \times 21 \mathrm{~mm}$		
Weight:	46 g		
Related standards:	EN 60669, EN 300 220, EN 301489 R\&TTE Directive, Order. No 426/2000 Coll. (Directive 1999/EC)		

[^0]- The switching unit with 1 output channel is used for controlling appliances and lights. It is possible to connect the existing button to the internal terminal in the wiring.
- They can be combined with detectors, controllers, iNELS RF Control or system components.
- The BOX design lets you mount it right in an installation box, a ceiling or controlled appliance cover.
- It enables connection of the switched load up to 16 A (4000 W).
- Function: button, impulse relay and time function of delayed start or return with time setting range of $2 \mathrm{~s}-60 \mathrm{~min}$.
- External button is programmed as a wireless button.
- Input is not galvanic isolated.
- The switching unit may be controlled by up to 25 channels (1 channel represents 1 button on the controller).
- The programming button on the unit is also used for manual control of the output.
- Memory status can be pre-set in the event of a power failure.
- For components it is possible to set the repeater function via the RFAF / USB service device.
- Range up to 200 m (in open space), if the signal is insufficient between the controller and unit, use the signal repeater RFRP-20 or protocol component RFIO^{2} that support this feature.
- Communication frequency with bidirectional protocol iNELS RF Control 2 (RFIO2).

Device description

Function

For more information see p. 74.

Connection

RFSAI-61B/230V

RFSAI-61B/120V

Single function - RFSA-11B

Function button ON/OFF

The output contact closes by pressing one button position, and opens by pressing the other button position.

Multi function - RFSA-61B, RFSA-62B, RFSA-61M, RFSA-66M, RFSAI-61B, RFSAI-62B, RFSC-61, RFUS-61

Function 1 -button

The output contact will be closed by pressing the button and opened by releasing the button.

Function 4 -impulse relay

The output contact will be switched to the opposite position by each press of the button. If the contact was closed, it will be opened and vice versa.

Function 2-switch on

The output contact will be closed by pressing the button.

Function 5 - delayed off

The output contact will be closed by pressing the button and opened after the set time interval has elapsed.
$\mathrm{t}=2 \mathrm{~s} \ldots 6 \mathrm{~min}$.

Function 3 - switch off

The output contact will be opened by pressing the button.

Function 6 - delayed on

The output contact will be opened by pressing the button and closed after the set time interval has elapsed.
$\mathrm{t}=2 \mathrm{~s} . . .60 \mathrm{~min}$.

Loadability products

RFJA-12B; RFSA-62B; RFSAI-62B; RFSA-66M; RFSTI-11/G; RFGSM-220M

Load type	$\begin{gathered} \square \\ \cos \varphi \geq 0.95 \\ \mathrm{AC1} \end{gathered}$			\square $=$ AC5a without compensation				\cdots AC7b	$\begin{aligned} & \square-\square \\ & \mathrm{AC} 12 \end{aligned}$
Contact material AgSnO_{2}, Contact 8 A	$250 \mathrm{~V} / 8 \mathrm{~A}$	$250 \mathrm{~V} / 5 \mathrm{~A}$	$250 \mathrm{~V} / 4 \mathrm{~A}$	X	X	250 W	$250 \mathrm{~V} / 4 \mathrm{~A}$	$250 \mathrm{~V} / 1 \mathrm{~A}$	$250 \mathrm{~V} / 1$ A
Load type		\bar{m} AC14	AC15	\square	$-\mathrm{M}-$		$\begin{aligned} & \square- \\ & \text { DC12 } \end{aligned}$	\bar{m} DC13	\bar{m} DC14
Contact material AgSnO_{2}, Contact 8 A	X	$250 \mathrm{~V} / 4 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	$30 \mathrm{~V} / 8 \mathrm{~A}$	$24 \mathrm{~V} / 3 \mathrm{~A}$	$30 \mathrm{~V} / 2 \mathrm{~A}$	$30 \mathrm{~V} / 8 \mathrm{~A}$	$30 \mathrm{~V} / 2 \mathrm{~A}$	X

RFUS-61

Load type	\square AC1	-M - AC2	-M - AC3	$=\square$ AC5a without compensation		$\xrightarrow{(M)}$ AC5b	$\underset{\text { AC6a }}{\underset{3 \mid \xi}{ }}$	An AC7b	AC12
Contact material AgSnO_{2}, Contact 14 A	$250 \mathrm{~V} / 12 \mathrm{~A}$	$250 \mathrm{~V} / 5 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	$\begin{gathered} 230 \mathrm{~V} / 3 \mathrm{~A} \\ (690 \mathrm{VA}) \\ \hline \end{gathered}$	$\left.\quad \begin{array}{l}230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA}) \\ \text { up to max input } \mathrm{C}=14 \mathrm{uF}\end{array}\right)$.	1000 W	x	$250 \mathrm{~V} / 3 \mathrm{~A}$	x
Load type		\bar{m} AC14	$\underset{\substack{m-1}}{ }$ AC15	DC1	$-$	$-$	$\boxed{\square}$	$\overline{ल m}$ DC13	\bar{m} DC14
Contact material AgSnO_{2}, Contact 14 A	x	$250 \mathrm{~V} / 6 \mathrm{~A}$	$250 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 10 \mathrm{~A}$	$24 \mathrm{~V} / 3 \mathrm{~A}$	$24 \mathrm{~V} / 2 \mathrm{~A}$	$24 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 2 \mathrm{~A}$	x

RFSA-11B; RFSA-61B; RFSA-61M; RFSTI-11B; RFDAC-71B , RFSC-61, RFSAI-61B

Load type	$\cos \varphi \geq 0.95$ AC1	-M - AC2		$=\square$ AC5a without compensation		(M) HABL.30V AC5b	$\underset{\text { AC6a }}{\underset{y}{3} \mid \xi}$	\cdots AC7b	AC12
Contact material AgSnO_{2}, Contact 16 A	$250 \mathrm{~V} / 16 \mathrm{~A}$	$250 \mathrm{~V} / 5 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	$\begin{gathered} 230 \mathrm{~V} / 3 \mathrm{~A} \\ (690 \mathrm{VA}) \\ \hline \end{gathered}$	$\begin{gathered} 230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA}) \\ \text { up to max input } \mathrm{C}=14 \mathrm{uF} \end{gathered}$	1000 W	x	$250 \mathrm{~V} / 3 \mathrm{~A}$	$250 \mathrm{~V} / 10 \mathrm{~A}$
Load type	$3 \mid \xi A$ AC13	\bar{m} AC14		DC1	-M - DC3	-M DC5	DC12	\bar{m} DC13	\bar{m} DC14
Contact material AgSnO_{2}, Contact 16 A	x	$250 \mathrm{~V} / 6 \mathrm{~A}$	$250 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 10 \mathrm{~A}$	$24 \mathrm{~V} / 3 \mathrm{~A}$	$24 \mathrm{~V} / 2 \mathrm{~A}$	24V/6 A	$24 \mathrm{~V} / 2 \mathrm{~A}$	x

[^0]: * Control button input is at the supply voltage potential.

